
python-zstandard
Release 0.20.0

Feb 20, 2023





Contents

1 Project Information 1
1.1 State of Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Comparison to Other Python Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Bundling of Zstandard Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Note on Zstandard’s Experimental API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.6 Donate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Installing 5
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 CFFI Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Legacy Format Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 All Install Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Building Against External libzstd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Concepts 9
3.1 Zstandard Frames and Compression Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Compression and Decompression Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 One-shot And Streaming Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Python Buffer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Requiring Output Sizes for Non-Streaming Decompression APIs . . . . . . . . . . . . . . . . . . . 10

4 API Usage 13
4.1 Choosing an API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Thread and Object Reuse Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Performance Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Compression APIs 17
5.1 ZstdCompressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 ZstdCompressionWriter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 ZstdCompressionReader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 ZstdCompressionObj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 ZstdCompressionChunker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Decompression APIs 29
6.1 ZstdDecompressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



6.2 ZstdDecompressionWriter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 ZstdDecompressionReader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 ZstdDecompressionObj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Multi-Threaded Compression 41

8 Dictionaries 43
8.1 ZstdCompressionDict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.2 Training Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 ZstdCompressionParameters 47

10 Miscellaneous APIs 51
10.1 Frame Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.2 estimate_decompression_context_size() . . . . . . . . . . . . . . . . . . . . . . . . 52
10.3 open() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4 compress() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.5 decompress() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.6 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 Buffer Types 55
11.1 BufferSegment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.2 BufferSegments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.3 BufferWithSegments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
11.4 BufferWithSegmentsCollection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

12 Contributing 57

13 Version History 59
13.1 1.0.0 (not yet released) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
13.2 0.20.0 (released 2023-02-20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
13.3 0.19.0 (released 2022-10-29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
13.4 0.18.0 (released 2022-06-20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
13.5 0.17.0 (released 2021-01-18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
13.6 0.16.0 (released 2021-10-16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
13.7 0.15.2 (released 2021-02-27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
13.8 0.15.1 (released 2020-12-31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
13.9 0.15.0 (released 2020-12-29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
13.10 0.14.1 (released 2020-12-05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.11 0.14.0 (released 2020-06-13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.12 0.13.0 (released 2019-12-28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.13 0.12.0 (released 2019-09-15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.14 0.11.1 (released 2019-05-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.15 0.11.0 (released 2019-02-24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.16 0.10.2 (released 2018-11-03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
13.17 0.10.1 (released 2018-10-08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.18 0.10.0 (released 2018-10-08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
13.19 0.9.1 (released 2018-06-04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13.20 0.9.0 (released 2018-04-08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13.21 0.8.0 (released 2017-03-08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.22 0.7.0 (released 2017-02-07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
13.23 0.6.0 (released 2017-01-14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13.24 0.5.2 (released 2016-11-12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13.25 0.5.1 (released 2016-11-12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13.26 0.5.0 (released 2016-11-10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ii



13.27 Older History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

14 Missing and Unimplemented Features 79
14.1 Missing Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
14.2 Compression and Decompression Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
14.3 Missing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
14.4 Missing Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Index 83

iii



iv



CHAPTER 1

Project Information

1.1 State of Project

The project is officially in beta state. The author is reasonably satisfied that functionality works as advertised. There
will be some backwards incompatible changes before 1.0, probably in the 0.9 release. This may involve renaming
the main module from zstd to zstandard and renaming various types and methods. Pin the package version to prevent
unwanted breakage when this change occurs!

This project is vendored and distributed with Mercurial 4.1, where it is used in a production capacity.

There is continuous integration for Python versions and 3.6+ on Linux x86_x64 and Windows x86 and x86_64. The
author is reasonably confident the extension is stable and works as advertised on these platforms.

The CFFI bindings are mostly feature complete. Where a feature is implemented in CFFI, unit tests run against both
C extension and CFFI implementation to ensure behavior parity.

1.2 Comparison to Other Python Bindings

https://pypi.python.org/pypi/zstd is an alternate Python binding to Zstandard. At the time this was written, the latest
release of that package (1.4.8) only exposed the simple APIs for compression and decompression. This package
exposes much more of the zstd API, including streaming and dictionary compression. This package also has CFFI
support.

https://github.com/animalize/pyzstd is an alternate Python binding to Zstandard. At the time this was written, the
latest release of that package (0.14.1) exposed a fraction of the functionality in this package. There may be some
minor features in pyzstd not found in this package. But those features could be added easily if someone made a
feature request. Also, pyzstd lacks CFFI support, so it won’t run on PyPy.

1

https://pypi.python.org/pypi/zstd
https://github.com/animalize/pyzstd


python-zstandard, Release 0.20.0

1.3 Performance

zstandard is a highly tunable compression algorithm. In its default settings (compression level 3), it will be faster
at compression and decompression and will have better compression ratios than zlib on most data sets. When tuned
for speed, it approaches lz4’s speed and ratios. When tuned for compression ratio, it approaches lzma ratios and
compression speed, but decompression speed is much faster. See the official zstandard documentation for more.

zstandard and this library support multi-threaded compression. There is a mechanism to compress large inputs using
multiple threads.

The performance of this library is usually very similar to what the zstandard C API can deliver. Overhead in this
library is due to general Python overhead and can’t easily be avoided by any zstandard Python binding. This library
exposes multiple APIs for performing compression and decompression so callers can pick an API suitable for their
need. Contrast with the compression modules in Python’s standard library (like zlib), which only offer limited
mechanisms for performing operations. The API flexibility means consumers can choose to use APIs that facilitate
zero copying or minimize Python object creation and garbage collection overhead.

This library is capable of single-threaded throughputs well over 1 GB/s. For exact numbers, measure yourself. The
source code repository has a bench.py script that can be used to measure things.

1.4 Bundling of Zstandard Source Code

The source repository for this project contains a vendored copy of the Zstandard source code. This is done for a few
reasons.

First, Zstandard is relatively new and not yet widely available as a system package. Providing a copy of the source
code enables the Python C extension to be compiled without requiring the user to obtain the Zstandard source code
separately.

Second, Zstandard has both a stable public API and an experimental API. The experimental API is actually quite
useful (contains functionality for training dictionaries for example), so it is something we wish to expose to Python.
However, the experimental API is only available via static linking. Furthermore, the experimental API can change
at any time. So, control over the exact version of the Zstandard library linked against is important to ensure known
behavior.

1.5 Note on Zstandard’s Experimental API

Many of the Zstandard APIs used by this module are marked as experimental within the Zstandard project.

It is unclear how Zstandard’s C API will evolve over time, especially with regards to this experimental functionality.
We will try to maintain backwards compatibility at the Python API level. However, we cannot guarantee this for things
not under our control.

Since a copy of the Zstandard source code is distributed with this module and since we compile against it, the behavior
of a specific version of this module should be constant for all of time. So if you pin the version of this module used in
your projects (which is a Python best practice), you should be shielded from unwanted future changes.

1.6 Donate

A lot of time has been invested into this project by the author.

2 Chapter 1. Project Information



python-zstandard, Release 0.20.0

If you find this project useful and would like to thank the author for their work or commission a feature, consider
donating some money. Any amount is appreciated. This can be done through GitHub Sponsors at https://github.com/
sponsors/indygreg.

1.6. Donate 3

https://github.com/sponsors/indygreg
https://github.com/sponsors/indygreg


python-zstandard, Release 0.20.0

4 Chapter 1. Project Information



CHAPTER 2

Installing

This package is uploaded to PyPI at https://pypi.python.org/pypi/zstandard. So, to install this package:

$ pip install zstandard

Binary wheels are made available for some platforms. If you need to install from a source distribution, all you should
need is a working C compiler and the Python development headers/libraries. On many Linux distributions, you can
install a python-dev or python-devel package to provide these dependencies.

Packages are also uploaded to Anaconda Cloud at https://anaconda.org/indygreg/zstandard. See that URL for how to
install this package with conda.

2.1 Requirements

This package is designed to run with Python 3.6, 3.7, 3.8, and 3.9 on common platforms (Linux, Windows, and OS X).
On PyPy (both PyPy2 and PyPy3) we support version 6.0.0 and above. x86 and x86_64 are well-tested on Windows.
Only x86_64 is well-tested on Linux and macOS.

2.2 CFFI Backend

In order to build/run the CFFI backend/bindings (as opposed to the C/Rust backend/bindings), you will need the cffi
package installed. The cffi package is listed as an optional dependency in setup.py and may not get picked up
by your packaging tools.

If you wish to use the CFFI backend (or have to use it since your Python distribution doesn’t support compiled
extensions using the Python C API - this is the case for PyPy for example), be sure you have the cffi package
installed.

One way to do this is to depend on the zstandard[cffi] dependency. e.g. pip install
'zstandard[cffi]' or add zstandard[cffi] to your pip requirements file.

5

https://pypi.python.org/pypi/zstandard
https://anaconda.org/indygreg/zstandard


python-zstandard, Release 0.20.0

2.3 Legacy Format Support

To enable legacy zstd format support which is needed to handle files compressed with zstd < 1.0 you need to provide
an installation option:

$ pip install zstandard --install-option="--legacy"

and since pip 7.0 it is possible to have the following line in your requirements.txt:

zstandard --install-option="--legacy"

2.4 All Install Arguments

setup.py accepts the following arguments for influencing behavior:

--legacy Enable legacy zstd format support in order to read files produced with zstd < 1.0.

--system-zstd Attempt to link against the zstd library present on the system instead of the version distributed
with the extension.

The Python extension only supports linking against a specific version of zstd. So if the system version differs
from what is expected, a build or runtime error will result.

--warning-as-errors Treat all compiler warnings as errors.

--no-c-backend Do not compile the C-based backend.

--no-cffi-backend Do not compile the CFFI-based backend.

--rust-backend Compile the Rust backend (not yet feature complete).

If you invoke setup.py, simply pass the aforementioned arguments. e.g. python3.9 setup.py
--no-cffi-backend. If using pip, use the --install-option argument. e.g. python3.9 -m
pip install zstandard --install-option --warning-as-errors. Or in a pip requirements file:
zstandard --install-option="--rust-backend".

In addition, the following environment variables are recognized:

ZSTD_EXTRA_COMPILER_ARGS Extra compiler arguments to compile the C backend with.

ZSTD_WARNINGS_AS_ERRORS Equivalent to setup.py --warnings-as-errors.

2.5 Building Against External libzstd

By default, this package builds and links against a single file libzstd bundled as part of the package distribution.
This copy of libzstd is statically linked into the extension.

It is possible to point setup.py at an external (typically system provided) libzstd. To do this, simply pass
--system-zstd to setup.py. e.g.

python3.9 setup.py --system-zstd or python3.9 -m pip install zstandard
--install-option="--system-zstd".

When building against a system libzstd, you may need to specify extra compiler arguments to help Python’s
build system find the external library. These can be specified via the ZSTD_EXTRA_COMPILER_ARGS environ-
ment variable. e.g. ZSTD_EXTRA_COMPILER_ARGS="-I/usr/local/include" python3.9 setup.
py --system-zstd.

6 Chapter 2. Installing



python-zstandard, Release 0.20.0

python-zstandard can be sensitive about what version of libzstd it links against. For best results, point this
package at the exact same version of libzstd that it bundles. See the bundled zstd/zstd.h or zstd/zstd.c
for which version that is.

When linking against an external libzstd, not all package features may be available. Notably, the
multi_compress_to_buffer() and multi_decompress_to_buffer() APIs are not available, as these
rely on private symbols in the libzstd C source code, which require building against private header files to use.

2.5. Building Against External libzstd 7



python-zstandard, Release 0.20.0

8 Chapter 2. Installing



CHAPTER 3

Concepts

It is useful to have a basic understanding of how Zstandard works in order to optimally use this library. In addition,
there are some low-level Python concepts that are worth explaining to aid understanding. This article aims to provide
that knowledge.

3.1 Zstandard Frames and Compression Format

Compressed zstandard data almost always exists within a container called a frame. (For the technically curious, see
the specification.)

The frame contains a header and optional trailer. The header contains a magic number to self-identify as a zstd frame
and a description of the compressed data that follows.

Among other things, the frame optionally contains the size of the decompressed data the frame represents, a 32-bit
checksum of the decompressed data (to facilitate verification during decompression), and the ID of the dictionary used
to compress the data.

Storing the original content size in the frame (write_content_size=True to ZstdCompressor) is important
for performance in some scenarios. Having the decompressed size stored there (or storing it elsewhere) allows de-
compression to perform a single memory allocation that is exactly sized to the output. This is faster than continuously
growing a memory buffer to hold output.

3.2 Compression and Decompression Contexts

In order to perform a compression or decompression operation with the zstd C API, you need what’s called a context.
A context essentially holds configuration and state for a compression or decompression operation. For example, a
compression context holds the configured compression level.

Contexts can be reused for multiple operations. Since creating and destroying contexts is not free, there are perfor-
mance advantages to reusing contexts.

9

https://github.com/facebook/zstd/blob/3bee41a70eaf343fbcae3637b3f6edbe52f35ed8/doc/zstd_compression_format.md


python-zstandard, Release 0.20.0

The ZstdCompressor and ZstdDecompressor types are essentially wrappers around these contexts in the zstd
C API.

3.3 One-shot And Streaming Operations

A compression or decompression operation can either be performed as a single one-shot operation or as a continuous
streaming operation.

In one-shot mode (the simple APIs provided by the Python interface), all input is handed to the compressor or decom-
pressor as a single buffer and all output is returned as a single buffer.

In streaming mode, input is delivered to the compressor or decompressor as a series of chunks via multiple function
calls. Likewise, output is obtained in chunks as well.

Streaming operations require an additional stream object to be created to track the operation. These are logical exten-
sions of context instances.

There are advantages and disadvantages to each mode of operation. There are scenarios where certain modes can’t be
used. See the Choosing an API section for more.

3.4 Dictionaries

A compression dictionary is essentially data used to seed the compressor state so it can achieve better compression.
The idea is that if you are compressing a lot of similar pieces of data (e.g. JSON documents or anything sharing
similar structure), then you can find common patterns across multiple objects then leverage those common patterns
during compression and decompression operations to achieve better compression ratios.

Dictionary compression is generally only useful for small inputs - data no larger than a few kilobytes. The upper
bound on this range is highly dependent on the input data and the dictionary.

3.5 Python Buffer Protocol

Many functions in the library operate on objects that implement Python’s buffer protocol.

The buffer protocol is an internal implementation detail of a Python type that allows instances of that type (objects)
to be exposed as a raw pointer (or buffer) in the C API. In other words, it allows objects to be exposed as an array of
bytes.

From the perspective of the C API, objects implementing the buffer protocol all look the same: they are just a pointer
to a memory address of a defined length. This allows the C API to be largely type agnostic when accessing their data.
This allows custom types to be passed in without first converting them to a specific type.

Many Python types implement the buffer protocol. These include bytes, bytearray, array.array, io.
BytesIO, mmap.mmap, and memoryview.

3.6 Requiring Output Sizes for Non-Streaming Decompression APIs

Non-streaming decompression APIs require that either the output size is explicitly defined (either in the zstd frame
header or passed into the function) or that a max output size is specified. This restriction is for your safety.

The one-shot decompression APIs store the decompressed result in a single buffer. This means that a buffer needs to
be pre-allocated to hold the result. If the decompressed size is not known, then there is no universal good default size

10 Chapter 3. Concepts

https://docs.python.org/3.6/c-api/buffer.html


python-zstandard, Release 0.20.0

to use. Any default will fail or will be highly sub-optimal in some scenarios (it will either be too small or will put
stress on the memory allocator to allocate a too large block).

A helpful API may retry decompression with buffers of increasing size. While useful, there are obvious performance
disadvantages, namely redoing decompression N times until it works. In addition, there is a security concern. Say
the input came from highly compressible data, like 1 GB of the same byte value. The output size could be several
magnitudes larger than the input size. An input of <100KB could decompress to >1GB. Without a bounds restriction
on the decompressed size, certain inputs could exhaust all system memory. That’s not good and is why the maximum
output size is limited.

3.6. Requiring Output Sizes for Non-Streaming Decompression APIs 11



python-zstandard, Release 0.20.0

12 Chapter 3. Concepts



CHAPTER 4

API Usage

To interface with Zstandard, simply import the zstandard module:

import zstandard

It is a popular convention to alias the module as a different name for brevity:

import zstandard as zstd

This module attempts to import and use either the C extension or CFFI implementation. On Python platforms known
to support C extensions (like CPython), it raises an ImportError if the C extension cannot be imported. On Python
platforms known to not support C extensions (like PyPy), it only attempts to import the CFFI implementation and
raises ImportError if that can’t be done. On other platforms, it first tries to import the C extension then falls back to
CFFI if that fails and raises ImportError if CFFI fails.

To change the module import behavior, a PYTHON_ZSTANDARD_IMPORT_POLICY environment variable can be
set. The following values are accepted:

default The behavior described above.

cffi_fallback Always try to import the C extension then fall back to CFFI if that fails.

cext Only attempt to import the C extension.

cffi Only attempt to import the CFFI implementation.

In addition, the zstandard module exports a backend attribute containing the string name of the backend being
used. It will be one of cext or cffi (for C extension and cffi, respectively).

Note: The documentation in this section makes references to various zstd concepts and functionality. See Concepts
for more details.

13



python-zstandard, Release 0.20.0

4.1 Choosing an API

There are multiple APIs for performing compression and decompression. This is because different applications have
different needs and this library wants to facilitate optimal use in as many use cases as possible.

From a high-level, APIs are divided into one-shot and streaming: either you are operating on all data at once or you
operate on it piecemeal.

The one-shot APIs are useful for small data, where the input or output size is known. (The size can come from a buffer
length, file size, or stored in the zstd frame header.) A limitation of the one-shot APIs is that input and output must fit
in memory simultaneously. For say a 4 GB input, this is often not feasible.

The one-shot APIs also perform all work as a single operation. So, if you feed it large input, it could take a long time
for the function to return.

The streaming APIs do not have the limitations of the simple API. But the price you pay for this flexibility is that they
are more complex than a single function call.

The streaming APIs put the caller in control of compression and decompression behavior by allowing them to directly
control either the input or output side of the operation.

With the streaming input, compressor, and decompressor APIs, the caller has full control over the input to the com-
pression or decompression stream. They can directly choose when new data is operated on.

With the streaming ouput APIs, the caller has full control over the output of the compression or decompression stream.
It can choose when to receive new data.

When using the streaming APIs that operate on file-like or stream objects, it is important to consider what happens
in that object when I/O is requested. There is potential for long pauses as data is read or written from the underlying
stream (say from interacting with a filesystem or network). This could add considerable overhead.

4.2 Thread and Object Reuse Safety

Unless stated otherwise, ZstdCompressor and ZstdDecompressor instances cannot be used for temporally
overlapping (de)compression operations. i.e. if you start a (de)compression operation on an instance or a helper object
derived from it, it isn’t safe to start another (de)compression operation from the same instance until the first one has
finished.

ZstdCompressor and ZstdDecompressor instances have no guarantees about thread safety. Do not operate on
the same ZstdCompressor and ZstdDecompressor instance simultaneously from different threads. It is fine
to have different threads call into a single instance, just not at the same time.

Objects derived from ZstdCompressor and ZstdDecompressor that perform (de)compression op-
erations (such as ZstdCompressionReader and ZstdDecompressionWriter) are bound to the
ZstdCompressor or ZstdDecompressor from which they came and are therefore not thread safe by exten-
sion.

Some operations require multiple function calls to complete. e.g. streaming operations. A single ZstdCompressor
or ZstdDecompressor cannot be used for simultaneously active operations. e.g. you must not start a streaming
operation when another streaming operation is already active.

If you need to perform multiple compression or decompression operations in parallel, you MUST construct
multiple ZstdCompressor or ZstdDecompressor instances so each independent operation has its own
ZstdCompressor or ZstdDecompressor instance.

The C extension releases the GIL during non-trivial calls into the zstd C API. Non-trivial calls are notably compression
and decompression. Trivial calls are things like parsing frame parameters. Where the GIL is released is considered an
implementation detail and can change in any release.

14 Chapter 4. API Usage



python-zstandard, Release 0.20.0

APIs that accept bytes-like objects don’t enforce that the underlying object is read-only. However, it is assumed
that the passed object is read-only for the duration of the function call. It is possible to pass a mutable object (like a
bytearray) to e.g. ZstdCompressor.compress(), have the GIL released, and mutate the object from another
thread. Such a race condition is a bug in the consumer of python-zstandard. Most Python data types are immutable,
so unless you are doing something fancy, you don’t need to worry about this.

4.3 Performance Considerations

The ZstdCompressor and ZstdDecompressor types maintain state to a persistent compression or decompres-
sion context. Reusing a ZstdCompressor or ZstdDecompressor instance for multiple operations is faster than
instantiating a new ZstdCompressor or ZstdDecompressor for each operation. The differences are magnified
as the size of data decreases. For example, the difference between context reuse and non-reuse for 100,000 100 byte
inputs will be significant (possibly over 10x faster to reuse contexts) whereas 10 100,000,000 byte inputs will be more
similar in speed (because the time spent doing compression dwarfs time spent creating new contexts).

4.3. Performance Considerations 15



python-zstandard, Release 0.20.0

16 Chapter 4. API Usage



CHAPTER 5

Compression APIs

5.1 ZstdCompressor

class zstandard.ZstdCompressor(level=3, dict_data=None, compression_params=None,
write_checksum=None, write_content_size=None,
write_dict_id=None, threads=0)

Create an object used to perform Zstandard compression.

Each instance is essentially a wrapper around a ZSTD_CCtx from zstd’s C API.

An instance can compress data various ways. Instances can be used multiple times. Each compression operation
will use the compression parameters defined at construction time.

compression_params is mutually exclusive with level, write_checksum,
write_content_size, write_dict_id, and threads.

Assume that each ZstdCompressor instance can only handle a single logical compression operation at the
same time. i.e. if you call a method like stream_reader() to obtain multiple objects derived from the same
ZstdCompressor instance and attempt to use them simultaneously, errors will likely occur.

If you need to perform multiple logical compression operations and you can’t guarantee those operations are
temporally non-overlapping, you need to obtain multiple ZstdCompressor instances.

Unless specified otherwise, assume that no two methods of ZstdCompressor instances can be called from
multiple Python threads simultaneously. In other words, assume instances are not thread safe unless stated
otherwise.

Parameters

• level – Integer compression level. Valid values are all negative integers through 22. Lower
values generally yield faster operations with lower compression ratios. Higher values are
generally slower but compress better. The default is 3, which is what the zstd CLI uses.
Negative levels effectively engage --fast mode from the zstd CLI.

• dict_data –

A ZstdCompressionDict to be used to compress with dictionary data.

17



python-zstandard, Release 0.20.0

• compression_params – A ZstdCompressionParameters instance defining
low-level compression parameters. If defined, this will overwrite the level argument.

• write_checksum – If True, a 4 byte content checksum will be written with the com-
pressed data, allowing the decompressor to perform content verification.

• write_content_size – If True (the default), the decompressed content size will be in-
cluded in the header of the compressed data. This data will only be written if the compressor
knows the size of the input data.

• write_dict_id – Determines whether the dictionary ID will be written into the com-
pressed data. Defaults to True. Only adds content to the compressed data if a dictionary is
being used.

• threads – Number of threads to use to compress data concurrently. When set, compres-
sion operations are performed on multiple threads. The default value (0) disables multi-
threaded compression. A value of -1 means to set the number of threads to the number of
detected logical CPUs.

chunker(size=-1, chunk_size=131591)
Create an object for iterative compressing to same-sized chunks.

This API is similar to ZstdCompressor.compressobj() but has better performance properties.

Parameters

• size – Size in bytes of data that will be compressed.

• chunk_size – Size of compressed chunks.

Returns ZstdCompressionChunker

compress(data)
Compress data in a single operation.

This is the simplest mechanism to perform compression: simply pass in a value and get a compressed
value back. It is almost the most prone to abuse.

The input and output values must fit in memory, so passing in very large values can result in excessive
memory usage. For this reason, one of the streaming based APIs is preferred for larger values.

Parameters data – Source data to compress

Returns Compressed data

>>> cctx = zstandard.ZstdCompressor()
>>> compressed = cctx.compress(b"data to compress")

compressobj(size=-1)
Obtain a compressor exposing the Python standard library compression API.

See ZstdCompressionObj for the full documentation.

Parameters size – Size in bytes of data that will be compressed.

Returns ZstdCompressionObj

copy_stream(ifh, ofh, size=-1, read_size=131072, write_size=131591)
Copy data between 2 streams while compressing it.

Data will be read from ifh, compressed, and written to ofh. ifh must have a read(size) method.
ofh must have a write(data) method.

18 Chapter 5. Compression APIs



python-zstandard, Release 0.20.0

>>> cctx = zstandard.ZstdCompressor()
>>> with open(input_path, "rb") as ifh, open(output_path, "wb") as ofh:
... cctx.copy_stream(ifh, ofh)

It is also possible to declare the size of the source stream:

>>> cctx = zstandard.ZstdCompressor()
>>> cctx.copy_stream(ifh, ofh, size=len_of_input)

You can also specify how large the chunks that are read() and write() from and to the streams:

>>> cctx = zstandard.ZstdCompressor()
>>> cctx.copy_stream(ifh, ofh, read_size=32768, write_size=16384)

The stream copier returns a 2-tuple of bytes read and written:

>>> cctx = zstandard.ZstdCompressor()
>>> read_count, write_count = cctx.copy_stream(ifh, ofh)

Parameters

• ifh – Source stream to read from

• ofh – Destination stream to write to

• size – Size in bytes of the source stream. If defined, compression parameters will be
tuned for this size.

• read_size – Chunk sizes that source stream should be read() from.

• write_size – Chunk sizes that destination stream should be write() to.

Returns 2-tuple of ints of bytes read and written, respectively.

frame_progression()
Return information on how much work the compressor has done.

Returns a 3-tuple of (ingested, consumed, produced).

>>> cctx = zstandard.ZstdCompressor()
>>> (ingested, consumed, produced) = cctx.frame_progression()

memory_size()
Obtain the memory usage of this compressor, in bytes.

>>> cctx = zstandard.ZstdCompressor()
>>> memory = cctx.memory_size()

multi_compress_to_buffer(data, threads=-1)
Compress multiple pieces of data as a single function call.

(Experimental. Not yet supported by CFFI backend.)

This function is optimized to perform multiple compression operations as as possible with as little overhead
as possible.

Data to be compressed can be passed as a BufferWithSegmentsCollection, a
BufferWithSegments, or a list containing byte like objects. Each element of the container
will be compressed individually using the configured parameters on the ZstdCompressor instance.

5.1. ZstdCompressor 19



python-zstandard, Release 0.20.0

The threads argument controls how many threads to use for compression. The default is 0 which means
to use a single thread. Negative values use the number of logical CPUs in the machine.

The function returns a BufferWithSegmentsCollection. This type represents N discrete memory
allocations, each holding 1 or more compressed frames.

Output data is written to shared memory buffers. This means that unlike regular Python objects, a reference
to any object within the collection keeps the shared buffer and therefore memory backing it alive. This can
have undesirable effects on process memory usage.

The API and behavior of this function is experimental and will likely change. Known deficiencies include:

• If asked to use multiple threads, it will always spawn that many threads, even if the input is too small
to use them. It should automatically lower the thread count when the extra threads would just add
overhead.

• The buffer allocation strategy is fixed. There is room to make it dynamic, perhaps even to allow one
output buffer per input, facilitating a variation of the API to return a list without the adverse effects of
shared memory buffers.

Parameters data – Source to read discrete pieces of data to compress.

Can be a BufferWithSegmentsCollection, a BufferWithSegments, or a
list[bytes].

Returns BufferWithSegmentsCollection holding compressed data.

read_to_iter(reader, size=-1, read_size=131072, write_size=131591)
Read uncompressed data from a reader and return an iterator

Returns an iterator of compressed data produced from reading from reader.

This method provides a mechanism to stream compressed data out of a source as an iterator of data chunks.

Uncompressed data will be obtained from reader by calling the read(size) method of it or by read-
ing a slice (if reader conforms to the buffer protocol). The source data will be streamed into a compres-
sor. As compressed data is available, it will be exposed to the iterator.

Data is read from the source in chunks of read_size. Compressed chunks are at most write_size
bytes. Both values default to the zstd input and and output defaults, respectively.

If reading from the source via read(), read() will be called until it raises or returns an empty
bytes (b""). It is perfectly valid for the source to deliver fewer bytes than were what requested by
read(size).

The caller is partially in control of how fast data is fed into the compressor by how it consumes the returned
iterator. The compressor will not consume from the reader unless the caller consumes from the iterator.

>>> cctx = zstandard.ZstdCompressor()
>>> for chunk in cctx.read_to_iter(fh):
... # Do something with emitted data.

read_to_iter() accepts a size argument declaring the size of the input stream:

>>> cctx = zstandard.ZstdCompressor()
>>> for chunk in cctx.read_to_iter(fh, size=some_int):
>>> pass

You can also control the size that data is read() from the source and the ideal size of output chunks:

20 Chapter 5. Compression APIs



python-zstandard, Release 0.20.0

>>> cctx = zstandard.ZstdCompressor()
>>> for chunk in cctx.read_to_iter(fh, read_size=16384, write_size=8192):
>>> pass

read_to_iter() does not give direct control over the sizes of chunks fed into the compressor. Instead,
chunk sizes will be whatever the object being read from delivers. These will often be of a uniform size.

Parameters

• reader – Stream providing data to be compressed.

• size – Size in bytes of input data.

• read_size – Controls how many bytes are read() from the source.

• write_size – Controls the output size of emitted chunks.

Returns Iterator of bytes.

stream_reader(source, size=-1, read_size=131072, closefd=True)
Wrap a readable source with a stream that can read compressed data.

This will produce an object conforming to the io.RawIOBase interface which can be read() from to
retrieve compressed data from a source.

The source object can be any object with a read(size) method or an object that conforms to the buffer
protocol.

See ZstdCompressionReader for type documentation and usage examples.

Parameters

• source – Object to read source data from

• size – Size in bytes of source object.

• read_size – How many bytes to request when read()’ing from the source.

• closefd – Whether to close the source stream when the returned stream is closed.

Returns ZstdCompressionReader

stream_writer(writer, size=-1, write_size=131591, write_return_read=True, closefd=True)
Create a stream that will write compressed data into another stream.

The argument to stream_writer() must have a write(data) method. As compressed data is
available, write() will be called with the compressed data as its argument. Many common Python types
implement write(), including open file handles and io.BytesIO.

See ZstdCompressionWriter for more documentation, including usage examples.

Parameters

• writer – Stream to write compressed data to.

• size – Size in bytes of data to be compressed. If set, it will be used to influence com-
pression parameter tuning and could result in the size being written into the header of the
compressed data.

• write_size – How much data to write() to writer at a time.

• write_return_read – Whether write() should return the number of bytes that
were consumed from the input.

• closefd – Whether to close the writer when this stream is closed.

Returns ZstdCompressionWriter

5.1. ZstdCompressor 21



python-zstandard, Release 0.20.0

5.2 ZstdCompressionWriter

class zstandard.ZstdCompressionWriter(compressor, writer, source_size, write_size,
write_return_read, closefd=True)

Writable compressing stream wrapper.

ZstdCompressionWriter is a write-only stream interface for writing compressed data to another stream.

This type conforms to the io.RawIOBase interface and should be usable by any type that operates against
a file-object (typing.BinaryIO in Python type hinting speak). Only methods that involve writing will do
useful things.

As data is written to this stream (e.g. via write()), that data is sent to the compressor. As compressed data
becomes available from the compressor, it is sent to the underlying stream by calling its write() method.

Both write() and flush() return the number of bytes written to the object’s write(). In many cases,
small inputs do not accumulate enough data to cause a write and write() will return 0.

Calling close() will mark the stream as closed and subsequent I/O operations will raise ValueError (per
the documented behavior of io.RawIOBase). close() will also call close() on the underlying stream if
such a method exists and the instance was constructed with closefd=True

Instances are obtained by calling ZstdCompressor.stream_writer().

Typically usage is as follows:

>>> cctx = zstandard.ZstdCompressor(level=10)
>>> compressor = cctx.stream_writer(fh)
>>> compressor.write(b"chunk 0\n")
>>> compressor.write(b"chunk 1\n")
>>> compressor.flush()
>>> # Receiver will be able to decode ``chunk 0\nchunk 1\n`` at this point.
>>> # Receiver is also expecting more data in the zstd *frame*.
>>>
>>> compressor.write(b"chunk 2\n")
>>> compressor.flush(zstandard.FLUSH_FRAME)
>>> # Receiver will be able to decode ``chunk 0\nchunk 1\nchunk 2``.
>>> # Receiver is expecting no more data, as the zstd frame is closed.
>>> # Any future calls to ``write()`` at this point will construct a new
>>> # zstd frame.

Instances can be used as context managers. Exiting the context manager is the equivalent of calling close(),
which is equivalent to calling flush(zstandard.FLUSH_FRAME):

>>> cctx = zstandard.ZstdCompressor(level=10)
>>> with cctx.stream_writer(fh) as compressor:
... compressor.write(b'chunk 0')
... compressor.write(b'chunk 1')
... ...

Important: If flush(FLUSH_FRAME) is not called, emitted data doesn’t constitute a full zstd frame and
consumers of this data may complain about malformed input. It is recommended to use instances as a context
manager to ensure frames are properly finished.

If the size of the data being fed to this streaming compressor is known, you can declare it before compression
begins:

22 Chapter 5. Compression APIs



python-zstandard, Release 0.20.0

>>> cctx = zstandard.ZstdCompressor()
>>> with cctx.stream_writer(fh, size=data_len) as compressor:
... compressor.write(chunk0)
... compressor.write(chunk1)
... ...

Declaring the size of the source data allows compression parameters to be tuned. And if
write_content_size is used, it also results in the content size being written into the frame header of
the output data.

The size of chunks being write() to the destination can be specified:

>>> cctx = zstandard.ZstdCompressor()
>>> with cctx.stream_writer(fh, write_size=32768) as compressor:
... ...

To see how much memory is being used by the streaming compressor:

>>> cctx = zstandard.ZstdCompressor()
>>> with cctx.stream_writer(fh) as compressor:
... ...
... byte_size = compressor.memory_size()

Thte total number of bytes written so far are exposed via tell():

>>> cctx = zstandard.ZstdCompressor()
>>> with cctx.stream_writer(fh) as compressor:
... ...
... total_written = compressor.tell()

stream_writer() accepts a write_return_read boolean argument to control the return value of
write(). When False (the default), write() returns the number of bytes that were write()’en to the un-
derlying object. When True, write() returns the number of bytes read from the input that were subsequently
written to the compressor. True is the proper behavior for write() as specified by the io.RawIOBase
interface and will become the default value in a future release.

close()

closed

fileno()

flush(flush_mode=0)
Evict data from compressor’s internal state and write it to inner stream.

Calling this method may result in 0 or more write() calls to the inner stream.

This method will also call flush() on the inner stream, if such a method exists.

Parameters flush_mode – How to flush the zstd compressor.

zstandard.FLUSH_BLOCK will flush data already sent to the compressor but not emitted
to the inner stream. The stream is still writable after calling this. This is the default behavior.

See documentation for other zstandard.FLUSH_* constants for more flushing options.

Returns Integer number of bytes written to the inner stream.

isatty()

memory_size()

5.2. ZstdCompressionWriter 23



python-zstandard, Release 0.20.0

read(size=-1)

readable()

readall()

readinto(b)

readline(size=-1)

readlines(hint=-1)

seek(offset, whence=None)

seekable()

tell()

truncate(size=None)

writable()

write(data)
Send data to the compressor and possibly to the inner stream.

writelines(lines)

5.3 ZstdCompressionReader

class zstandard.ZstdCompressionReader(compressor, source, read_size, closefd=True)
Readable compressing stream wrapper.

ZstdCompressionReader is a read-only stream interface for obtaining compressed data from a source.

This type conforms to the io.RawIOBase interface and should be usable by any type that operates against a
file-object (typing.BinaryIO in Python type hinting speak).

Instances are neither writable nor seekable (even if the underlying source is seekable). readline() and
readlines() are not implemented because they don’t make sense for compressed data. tell() returns the
number of compressed bytes emitted so far.

Instances are obtained by calling ZstdCompressor.stream_reader().

In this example, we open a file for reading and then wrap that file handle with a stream from which compressed
data can be read().

>>> with open(path, 'rb') as fh:
... cctx = zstandard.ZstdCompressor()
... reader = cctx.stream_reader(fh)
... while True:
... chunk = reader.read(16384)
... if not chunk:
... break
...
... # Do something with compressed chunk.

Instances can also be used as context managers:

>>> with open(path, 'rb') as fh:
... cctx = zstandard.ZstdCompressor()
... with cctx.stream_reader(fh) as reader:

(continues on next page)

24 Chapter 5. Compression APIs



python-zstandard, Release 0.20.0

(continued from previous page)

... while True:

... chunk = reader.read(16384)

... if not chunk:

... break

...

... # Do something with compressed chunk.

When the context manager exits or close() is called, the stream is closed, underlying resources are released,
and future operations against the compression stream will fail.

stream_reader() accepts a size argument specifying how large the input stream is. This is used to adjust
compression parameters so they are tailored to the source size. e.g.

>>> with open(path, 'rb') as fh:
... cctx = zstandard.ZstdCompressor()
... with cctx.stream_reader(fh, size=os.stat(path).st_size) as reader:
... ...

If the source is a stream, you can specify how large read() requests to that stream should be via the
read_size argument. It defaults to zstandard.COMPRESSION_RECOMMENDED_INPUT_SIZE. e.g.

>>> with open(path, 'rb') as fh:
... cctx = zstandard.ZstdCompressor()
... # Will perform fh.read(8192) when obtaining data to feed into the
... # compressor.
... with cctx.stream_reader(fh, read_size=8192) as reader:
... ...

close()

closed

flush()

isatty()

next()

read(size=-1)

read1(size=-1)

readable()

readall()

readinto(b)

readinto1(b)

readline()

readlines()

seekable()

tell()

writable()

write(data)

writelines(ignored)

5.3. ZstdCompressionReader 25



python-zstandard, Release 0.20.0

5.4 ZstdCompressionObj

class zstandard.ZstdCompressionObj
A compressor conforming to the API in Python’s standard library.

This type implements an API similar to compression types in Python’s standard library such as zlib.
compressobj and bz2.BZ2Compressor. This enables existing code targeting the standard library API to
swap in this type to achieve zstd compression.

Important: The design of this API is not ideal for optimal performance.

The reason performance is not optimal is because the API is limited to returning a single buffer holding com-
pressed data. When compressing data, we don’t know how much data will be emitted. So in order to capture all
this data in a single buffer, we need to perform buffer reallocations and/or extra memory copies. This can add
significant overhead depending on the size or nature of the compressed data how much your application calls
this type.

If performance is critical, consider an API like ZstdCompressor.stream_reader(),
ZstdCompressor.stream_writer(), ZstdCompressor.chunker(), or ZstdCompressor.
read_to_iter(), which result in less overhead managing buffers.

Instances are obtained by calling ZstdCompressor.compressobj().

Here is how this API should be used:

>>> cctx = zstandard.ZstdCompressor()
>>> cobj = cctx.compressobj()
>>> data = cobj.compress(b"raw input 0")
>>> data = cobj.compress(b"raw input 1")
>>> data = cobj.flush()

Or to flush blocks:

>>> cctx.zstandard.ZstdCompressor()
>>> cobj = cctx.compressobj()
>>> data = cobj.compress(b"chunk in first block")
>>> data = cobj.flush(zstandard.COMPRESSOBJ_FLUSH_BLOCK)
>>> data = cobj.compress(b"chunk in second block")
>>> data = cobj.flush()

For best performance results, keep input chunks under 256KB. This avoids extra allocations for a large output
object.

It is possible to declare the input size of the data that will be fed into the compressor:

>>> cctx = zstandard.ZstdCompressor()
>>> cobj = cctx.compressobj(size=6)
>>> data = cobj.compress(b"foobar")
>>> data = cobj.flush()

compress(data)
Send data to the compressor.

This method receives bytes to feed to the compressor and returns bytes constituting zstd compressed data.

The zstd compressor accumulates bytes and the returned bytes may be substantially smaller or larger than
the size of the input data on any given call. The returned value may be the empty byte string (b"").

26 Chapter 5. Compression APIs



python-zstandard, Release 0.20.0

Parameters data – Data to write to the compressor.

Returns Compressed data.

flush(flush_mode=0)
Emit data accumulated in the compressor that hasn’t been outputted yet.

The flush_mode argument controls how to end the stream.

zstandard.COMPRESSOBJ_FLUSH_FINISH (the default) ends the compression stream and finishes
a zstd frame. Once this type of flush is performed, compress() and flush() can no longer be called.
This type of flush must be called to end the compression context. If not called, the emitted data may be
incomplete and may not be readable by a decompressor.

zstandard.COMPRESSOBJ_FLUSH_BLOCK will flush a zstd block. This ensures that all data fed to
this instance will have been omitted and can be decoded by a decompressor. Flushes of this type can be
performed multiple times. The next call to compress() will begin a new zstd block.

Parameters flush_mode – How to flush the zstd compressor.

Returns Compressed data.

5.5 ZstdCompressionChunker

class zstandard.ZstdCompressionChunker(compressor, chunk_size)
Compress data to uniformly sized chunks.

This type allows you to iteratively feed chunks of data into a compressor and produce output chunks of uniform
size.

compress(), flush(), and finish() all return an iterator of bytes instances holding compressed data.
The iterator may be empty. Callers MUST iterate through all elements of the returned iterator before performing
another operation on the object or else the compressor’s internal state may become confused. This can result in
an exception being raised or malformed data being emitted.

All chunks emitted by compress() will have a length of the configured chunk size.

flush() and finish() may return a final chunk smaller than the configured chunk size.

Instances are obtained by calling ZstdCompressor.chunker().

Here is how the API should be used:

>>> cctx = zstandard.ZstdCompressor()
>>> chunker = cctx.chunker(chunk_size=32768)
>>>
>>> with open(path, 'rb') as fh:
... while True:
... in_chunk = fh.read(32768)
... if not in_chunk:
... break
...
... for out_chunk in chunker.compress(in_chunk):
... # Do something with output chunk of size 32768.
...
... for out_chunk in chunker.finish():
... # Do something with output chunks that finalize the zstd frame.

This compressor type is often a better alternative to ZstdCompressor.compressobj because it has better
performance properties.

5.5. ZstdCompressionChunker 27



python-zstandard, Release 0.20.0

compressobj() will emit output data as it is available. This results in a stream of output chunks of varying
sizes. The consistency of the output chunk size with chunker() is more appropriate for many usages, such as
sending compressed data to a socket.

compressobj() may also perform extra memory reallocations in order to dynamically adjust the sizes of
the output chunks. Since chunker() output chunks are all the same size (except for flushed or final chunks),
there is less memory allocation/copying overhead.

compress(data)
Feed new input data into the compressor.

Parameters data – Data to feed to compressor.

Returns Iterator of bytes representing chunks of compressed data.

finish()
Signals the end of input data.

No new data can be compressed after this method is called.

This method will flush buffered data and finish the zstd frame.

Returns Iterator of bytes of compressed data.

flush()
Flushes all data currently in the compressor.

Returns Iterator of bytes of compressed data.

28 Chapter 5. Compression APIs



CHAPTER 6

Decompression APIs

6.1 ZstdDecompressor

class zstandard.ZstdDecompressor(dict_data=None, max_window_size=0, format=0)
Context for performing zstandard decompression.

Each instance is essentially a wrapper around a ZSTD_DCtx from zstd’s C API.

An instance can compress data various ways. Instances can be used multiple times.

The interface of this class is very similar to zstandard.ZstdCompressor (by design).

Assume that each ZstdDecompressor instance can only handle a single logical compression operation at
the same time. i.e. if you call a method like decompressobj() to obtain multiple objects derived from the
same ZstdDecompressor instance and attempt to use them simultaneously, errors will likely occur.

If you need to perform multiple logical decompression operations and you can’t guarantee those operations are
temporally non-overlapping, you need to obtain multiple ZstdDecompressor instances.

Unless specified otherwise, assume that no two methods of ZstdDecompressor instances can be called
from multiple Python threads simultaneously. In other words, assume instances are not thread safe unless stated
otherwise.

Parameters

• dict_data – Compression dictionary to use.

• max_window_size – Sets an upper limit on the window size for decompression opera-
tions in kibibytes. This setting can be used to prevent large memory allocations for inputs
using large compression windows.

• format – Set the format of data for the decoder.

By default this is zstandard.FORMAT_ZSTD1. It can be set to zstandard.
FORMAT_ZSTD1_MAGICLESS to allow decoding frames without the 4 byte magic header.
Not all decompression APIs support this mode.

29



python-zstandard, Release 0.20.0

copy_stream(ifh, ofh, read_size=131075, write_size=131072)
Copy data between streams, decompressing in the process.

Compressed data will be read from ifh, decompressed, and written to ofh.

>>> dctx = zstandard.ZstdDecompressor()
>>> dctx.copy_stream(ifh, ofh)

e.g. to decompress a file to another file:

>>> dctx = zstandard.ZstdDecompressor()
>>> with open(input_path, 'rb') as ifh, open(output_path, 'wb') as ofh:
... dctx.copy_stream(ifh, ofh)

The size of chunks being read() and write() from and to the streams can be specified:

>>> dctx = zstandard.ZstdDecompressor()
>>> dctx.copy_stream(ifh, ofh, read_size=8192, write_size=16384)

Parameters

• ifh – Source stream to read compressed data from.

Must have a read() method.

• ofh – Destination stream to write uncompressed data to.

Must have a write() method.

• read_size – The number of bytes to read() from the source in a single operation.

• write_size – The number of bytes to write() to the destination in a single operation.

Returns 2-tuple of integers representing the number of bytes read and written, respectively.

decompress(data, max_output_size=0, read_across_frames=False, allow_extra_data=True)
Decompress data in a single operation.

This method will decompress the input data in a single operation and return the decompressed data.

The input bytes are expected to contain at least 1 full Zstandard frame (something compressed with
ZstdCompressor.compress() or similar). If the input does not contain a full frame, an exception
will be raised.

read_across_frames controls whether to read multiple zstandard frames in the input. When False,
decompression stops after reading the first frame. This feature is not yet implemented but the argument is
provided for forward API compatibility when the default is changed to True in a future release. For now,
if you need to decompress multiple frames, use an API like ZstdCompressor.stream_reader()
with read_across_frames=True.

allow_extra_data controls how to handle extra input data after a fully decoded frame. If False, any
extra data (which could be a valid zstd frame) will result in ZstdError being raised. If True, extra data is
silently ignored. The default will likely change to False in a future release when read_across_frames
defaults to True.

If the input contains extra data after a full frame, that extra input data is silently ignored. This behavior is
undesirable in many scenarios and will likely be changed or controllable in a future release (see #181).

If the frame header of the compressed data does not contain the content size, max_output_size must
be specified or ZstdError will be raised. An allocation of size max_output_size will be performed
and an attempt will be made to perform decompression into that buffer. If the buffer is too small or cannot
be allocated, ZstdError will be raised. The buffer will be resized if it is too large.

30 Chapter 6. Decompression APIs



python-zstandard, Release 0.20.0

Uncompressed data could be much larger than compressed data. As a result, calling this function could
result in a very large memory allocation being performed to hold the uncompressed data. This could
potentially result in MemoryError or system memory swapping. If you don’t need the full output data in
a single contiguous array in memory, consider using streaming decompression for more resilient memory
behavior.

Usage:

>>> dctx = zstandard.ZstdDecompressor()
>>> decompressed = dctx.decompress(data)

If the compressed data doesn’t have its content size embedded within it, decompression can be attempted
by specifying the max_output_size argument:

>>> dctx = zstandard.ZstdDecompressor()
>>> uncompressed = dctx.decompress(data, max_output_size=1048576)

Ideally, max_output_size will be identical to the decompressed output size.

Important: If the exact size of decompressed data is unknown (not passed in explicitly and not stored in
the zstd frame), for performance reasons it is encouraged to use a streaming API.

Parameters

• data – Compressed data to decompress.

• max_output_size – Integer max size of response.

If 0, there is no limit and we can attempt to allocate an output buffer of infinite size.

Returns bytes representing decompressed output.

decompress_content_dict_chain(frames)
Decompress a series of frames using the content dictionary chaining technique.

Such a list of frames is produced by compressing discrete inputs where each non-initial input is compressed
with a prefix dictionary consisting of the content of the previous input.

For example, say you have the following inputs:

>>> inputs = [b"input 1", b"input 2", b"input 3"]

The zstd frame chain consists of:

1. b"input 1" compressed in standalone/discrete mode

2. b"input 2" compressed using b"input 1" as a prefix dictionary

3. b"input 3" compressed using b"input 2" as a prefix dictionary

Each zstd frame must have the content size written.

The following Python code can be used to produce a prefix dictionary chain:

>>> def make_chain(inputs):
... frames = []
...
... # First frame is compressed in standalone/discrete mode.
... zctx = zstandard.ZstdCompressor()

(continues on next page)

6.1. ZstdDecompressor 31



python-zstandard, Release 0.20.0

(continued from previous page)

... frames.append(zctx.compress(inputs[0]))

...

... # Subsequent frames use the previous fulltext as a prefix dictionary

... for i, raw in enumerate(inputs[1:]):

... dict_data = zstandard.ZstdCompressionDict(

... inputs[i], dict_type=zstandard.DICT_TYPE_RAWCONTENT)

... zctx = zstandard.ZstdCompressor(dict_data=dict_data)

... frames.append(zctx.compress(raw))

...

... return frames

decompress_content_dict_chain() returns the uncompressed data of the last element in the
input chain.

Note: It is possible to implement prefix dictionary chain decompression on top of other APIs. However,
this function will likely be faster - especially for long input chains - as it avoids the overhead of instantiating
and passing around intermediate objects between multiple functions.

Parameters frames – List of bytes holding compressed zstd frames.

Returns

decompressobj(write_size=131072)
Obtain a standard library compatible incremental decompressor.

See ZstdDecompressionObj for more documentation and usage examples.

Parameters write_size –

Returns zstandard.ZstdDecompressionObj

memory_size()
Size of decompression context, in bytes.

>>> dctx = zstandard.ZstdDecompressor()
>>> size = dctx.memory_size()

multi_decompress_to_buffer(frames, decompressed_sizes=None, threads=0)
Decompress multiple zstd frames to output buffers as a single operation.

(Experimental. Not available in CFFI backend.)

Compressed frames can be passed to the function as a BufferWithSegments, a
BufferWithSegmentsCollection, or as a list containing objects that conform to the
buffer protocol. For best performance, pass a BufferWithSegmentsCollection or a
BufferWithSegments, as minimal input validation will be done for that type. If calling from
Python (as opposed to C), constructing one of these instances may add overhead cancelling out the
performance overhead of validation for list inputs.

Returns a BufferWithSegmentsCollection containing the decompressed data. All decompressed
data is allocated in a single memory buffer. The BufferWithSegments instance tracks which objects
are at which offsets and their respective lengths.

>>> dctx = zstandard.ZstdDecompressor()
>>> results = dctx.multi_decompress_to_buffer([b'...', b'...'])

32 Chapter 6. Decompression APIs



python-zstandard, Release 0.20.0

The decompressed size of each frame MUST be discoverable. It can either be embedded within the zstd
frame or passed in via the decompressed_sizes argument.

The decompressed_sizes argument is an object conforming to the buffer protocol which holds an
array of 64-bit unsigned integers in the machine’s native format defining the decompressed sizes of each
frame. If this argument is passed, it avoids having to scan each frame for its decompressed size. This
frame scanning can add noticeable overhead in some scenarios.

>>> frames = [...]
>>> sizes = struct.pack('=QQQQ', len0, len1, len2, len3)
>>>
>>> dctx = zstandard.ZstdDecompressor()
>>> results = dctx.multi_decompress_to_buffer(frames, decompressed_
→˓sizes=sizes)

Note: It is possible to pass a mmap.mmap() instance into this function by wrapping it with a
BufferWithSegments instance (which will define the offsets of frames within the memory mapped
region).

This function is logically equivalent to performing ZstdCompressor.decompress() on each input
frame and returning the result.

This function exists to perform decompression on multiple frames as fast as possible by having as little
overhead as possible. Since decompression is performed as a single operation and since the decompressed
output is stored in a single buffer, extra memory allocations, Python objects, and Python function calls are
avoided. This is ideal for scenarios where callers know up front that they need to access data for multiple
frames, such as when delta chains are being used.

Currently, the implementation always spawns multiple threads when requested, even if the amount of work
to do is small. In the future, it will be smarter about avoiding threads and their associated overhead when
the amount of work to do is small.

Parameters

• frames – Source defining zstd frames to decompress.

• decompressed_sizes – Array of integers representing sizes of decompressed zstd
frames.

• threads – How many threads to use for decompression operations.

Negative values will use the same number of threads as logical CPUs on the machine.
Values 0 or 1 use a single thread.

Returns BufferWithSegmentsCollection

read_to_iter(reader, read_size=131075, write_size=131072, skip_bytes=0)
Read compressed data to an iterator of uncompressed chunks.

This method will read data from reader, feed it to a decompressor, and emit bytes chunks representing
the decompressed result.

>>> dctx = zstandard.ZstdDecompressor()
>>> for chunk in dctx.read_to_iter(fh):
... # Do something with original data.

read_to_iter() accepts an object with a read(size) method that will return compressed bytes or
an object conforming to the buffer protocol.

read_to_iter() returns an iterator whose elements are chunks of the decompressed data.

6.1. ZstdDecompressor 33



python-zstandard, Release 0.20.0

The size of requested read() from the source can be specified:

>>> dctx = zstandard.ZstdDecompressor()
>>> for chunk in dctx.read_to_iter(fh, read_size=16384):
... pass

It is also possible to skip leading bytes in the input data:

>>> dctx = zstandard.ZstdDecompressor()
>>> for chunk in dctx.read_to_iter(fh, skip_bytes=1):
... pass

Tip: Skipping leading bytes is useful if the source data contains extra header data. Traditionally, you
would need to create a slice or memoryview of the data you want to decompress. This would create
overhead. It is more efficient to pass the offset into this API.

Similarly to ZstdCompressor.read_to_iter(), the consumer of the iterator controls when data
is decompressed. If the iterator isn’t consumed, decompression is put on hold.

When read_to_iter() is passed an object conforming to the buffer protocol, the behavior may seem
similar to what occurs when the simple decompression API is used. However, this API works when the
decompressed size is unknown. Furthermore, if feeding large inputs, the decompressor will work in chunks
instead of performing a single operation.

Parameters

• reader – Source of compressed data. Can be any object with a read(size) method
or any object conforming to the buffer protocol.

• read_size – Integer size of data chunks to read from reader and feed into the de-
compressor.

• write_size – Integer size of data chunks to emit from iterator.

• skip_bytes – Integer number of bytes to skip over before sending data into the decom-
pressor.

Returns Iterator of bytes representing uncompressed data.

stream_reader(source, read_size=131075, read_across_frames=False, closefd=True)
Read-only stream wrapper that performs decompression.

This method obtains an object that conforms to the io.RawIOBase interface and performs transparent
decompression via read() operations. Source data is obtained by calling read() on a source stream or
object implementing the buffer protocol.

See zstandard.ZstdDecompressionReader for more documentation and usage examples.

Parameters

• source – Source of compressed data to decompress. Can be any object with a
read(size) method or that conforms to the buffer protocol.

• read_size – Integer number of bytes to read from the source and feed into the com-
pressor at a time.

• read_across_frames – Whether to read data across multiple zstd frames. If False,
decompression is stopped at frame boundaries.

• closefd – Whether to close the source stream when this instance is closed.

34 Chapter 6. Decompression APIs



python-zstandard, Release 0.20.0

Returns zstandard.ZstdDecompressionReader.

stream_writer(writer, write_size=131072, write_return_read=True, closefd=True)
Push-based stream wrapper that performs decompression.

This method constructs a stream wrapper that conforms to the io.RawIOBase interface and performs
transparent decompression when writing to a wrapper stream.

See zstandard.ZstdDecompressionWriter for more documentation and usage examples.

Parameters

• writer – Destination for decompressed output. Can be any object with a
write(data).

• write_size – Integer size of chunks to write() to writer.

• write_return_read – Whether write() should return the number of bytes of input
consumed. If False, write() returns the number of bytes sent to the inner stream.

• closefd – Whether to close() the inner stream when this stream is closed.

Returns zstandard.ZstdDecompressionWriter

6.2 ZstdDecompressionWriter

class zstandard.ZstdDecompressionWriter(decompressor, writer, write_size,
write_return_read, closefd=True)

Write-only stream wrapper that performs decompression.

This type provides a writable stream that performs decompression and writes decompressed data to another
stream.

This type implements the io.RawIOBase interface. Only methods that involve writing will do useful things.

Behavior is similar to ZstdCompressor.stream_writer(): compressed data is sent to the decom-
pressor by calling write(data) and decompressed output is written to the inner stream by calling its
write(data) method:

>>> dctx = zstandard.ZstdDecompressor()
>>> decompressor = dctx.stream_writer(fh)
>>> # Will call fh.write() with uncompressed data.
>>> decompressor.write(compressed_data)

Instances can be used as context managers. However, context managers add no extra special behavior other than
automatically calling close() when they exit.

Calling close() will mark the stream as closed and subsequent I/O operations will raise ValueError (per
the documented behavior of io.RawIOBase). close() will also call close() on the underlying stream if
such a method exists and the instance was created with closefd=True.

The size of chunks to write() to the destination can be specified:

>>> dctx = zstandard.ZstdDecompressor()
>>> with dctx.stream_writer(fh, write_size=16384) as decompressor:
>>> pass

You can see how much memory is being used by the decompressor:

6.2. ZstdDecompressionWriter 35



python-zstandard, Release 0.20.0

>>> dctx = zstandard.ZstdDecompressor()
>>> with dctx.stream_writer(fh) as decompressor:
>>> byte_size = decompressor.memory_size()

stream_writer() accepts a write_return_read boolean argument to control the return value of
write(). When True (the default)‘‘, write() returns the number of bytes that were read from the in-
put. When False, write() returns the number of bytes that were write() to the inner stream.

close()

closed

fileno()

flush()

isatty()

memory_size()

read(size=-1)

readable()

readall()

readinto(b)

readline(size=-1)

readlines(hint=-1)

seek(offset, whence=None)

seekable()

tell()

truncate(size=None)

writable()

write(data)

writelines(lines)

6.3 ZstdDecompressionReader

class zstandard.ZstdDecompressionReader(decompressor, source, read_size,
read_across_frames, closefd=True)

Read only decompressor that pull uncompressed data from another stream.

This type provides a read-only stream interface for performing transparent decompression from another stream
or data source. It conforms to the io.RawIOBase interface. Only methods relevant to reading are imple-
mented.

>>> with open(path, 'rb') as fh:
>>> dctx = zstandard.ZstdDecompressor()
>>> reader = dctx.stream_reader(fh)
>>> while True:
... chunk = reader.read(16384)
... if not chunk:

(continues on next page)

36 Chapter 6. Decompression APIs



python-zstandard, Release 0.20.0

(continued from previous page)

... break

... # Do something with decompressed chunk.

The stream can also be used as a context manager:

>>> with open(path, 'rb') as fh:
... dctx = zstandard.ZstdDecompressor()
... with dctx.stream_reader(fh) as reader:
... ...

When used as a context manager, the stream is closed and the underlying resources are released when the context
manager exits. Future operations against the stream will fail.

The source argument to stream_reader() can be any object with a read(size) method or any object
implementing the buffer protocol.

If the source is a stream, you can specify how large read() requests to that stream should be via the
read_size argument. It defaults to zstandard.DECOMPRESSION_RECOMMENDED_INPUT_SIZE.:

>>> with open(path, 'rb') as fh:
... dctx = zstandard.ZstdDecompressor()
... # Will perform fh.read(8192) when obtaining data for the decompressor.
... with dctx.stream_reader(fh, read_size=8192) as reader:
... ...

Instances are partially seekable. Absolute and relative positions (SEEK_SET and SEEK_CUR) forward of the
current position are allowed. Offsets behind the current read position and offsets relative to the end of stream
are not allowed and will raise ValueError if attempted.

tell() returns the number of decompressed bytes read so far.

Not all I/O methods are implemented. Notably missing is support for readline(), readlines(), and
linewise iteration support. This is because streams operate on binary data - not text data. If you want to convert
decompressed output to text, you can chain an io.TextIOWrapper to the stream:

>>> with open(path, 'rb') as fh:
... dctx = zstandard.ZstdDecompressor()
... stream_reader = dctx.stream_reader(fh)
... text_stream = io.TextIOWrapper(stream_reader, encoding='utf-8')
... for line in text_stream:
... ...

close()

closed

flush()

isatty()

next()

read(size=-1)

read1(size=-1)

readable()

readall()

readinto(b)

6.3. ZstdDecompressionReader 37



python-zstandard, Release 0.20.0

readinto1(b)

readline(size=-1)

readlines(hint=-1)

seek(pos, whence=0)

seekable()

tell()

writable()

write(data)

writelines(lines)

6.4 ZstdDecompressionObj

class zstandard.ZstdDecompressionObj(decompressor, write_size)
A standard library API compatible decompressor.

This type implements a compressor that conforms to the API by other decompressors in Python’s standard
library. e.g. zlib.decompressobj or bz2.BZ2Decompressor. This allows callers to use zstd com-
pression while conforming to a similar API.

Compressed data chunks are fed into decompress(data) and uncompressed output (or an empty bytes)
is returned. Output from subsequent calls needs to be concatenated to reassemble the full decompressed byte
sequence.

Each instance is single use: once an input frame is decoded, decompress() can no longer be called.

>>> dctx = zstandard.ZstdDecompressor()
>>> dobj = dctx.decompressobj()
>>> data = dobj.decompress(compressed_chunk_0)
>>> data = dobj.decompress(compressed_chunk_1)

By default, calls to decompress() write output data in chunks of size
DECOMPRESSION_RECOMMENDED_OUTPUT_SIZE. These chunks are concatenated before being re-
turned to the caller. It is possible to define the size of these temporary chunks by passing write_size to
decompressobj():

>>> dctx = zstandard.ZstdDecompressor()
>>> dobj = dctx.decompressobj(write_size=1048576)

Note: Because calls to decompress() may need to perform multiple memory (re)allocations, this streaming
decompression API isn’t as efficient as other APIs.

decompress(data)
Send compressed data to the decompressor and obtain decompressed data.

Parameters data – Data to feed into the decompressor.

Returns Decompressed bytes.

eof
Whether the end of the compressed data stream has been reached.

38 Chapter 6. Decompression APIs



python-zstandard, Release 0.20.0

flush(length=0)
Effectively a no-op.

Implemented for compatibility with the standard library APIs.

Safe to call at any time.

Returns Empty bytes.

unconsumed_tail
Data that has not yet been fed into the decompressor.

unused_data
Bytes past the end of compressed data.

If decompress() is fed additional data beyond the end of a zstd frame, this value will be non-empty
once decompress() fully decodes the input frame.

6.4. ZstdDecompressionObj 39



python-zstandard, Release 0.20.0

40 Chapter 6. Decompression APIs



CHAPTER 7

Multi-Threaded Compression

ZstdCompressor accepts a threads argument that controls the number of threads to use for compression. The
way this works is that input is split into segments and each segment is fed into a worker pool for compression. Once a
segment is compressed, it is flushed/appended to the output.

Note: These threads are created at the C layer and are not Python threads. So they work outside the GIL. It is therefore
possible to CPU saturate multiple cores from Python.

The segment size for multi-threaded compression is chosen from the window size of the compressor. This is derived
from the window_log attribute of a ZstdCompressionParameters instance. By default, segment sizes are in
the 1+MB range.

If multi-threaded compression is requested and the input is smaller than the configured segment size, only a single
compression thread will be used. If the input is smaller than the segment size multiplied by the thread pool size
or if data cannot be delivered to the compressor fast enough, not all requested compressor threads may be active
simultaneously.

Compared to non-multi-threaded compression, multi-threaded compression has higher per-operation overhead. This
includes extra memory operations, thread creation, lock acquisition, etc.

Due to the nature of multi-threaded compression using N compression states, the output from multi-threaded com-
pression will likely be larger than non-multi-threaded compression. The difference is usually small. But there is a
CPU/wall time versus size trade off that may warrant investigation.

Output from multi-threaded compression does not require any special handling on the decompression side. To the
decompressor, data generated with single threaded compressor looks the same as data generated by a multi-threaded
compressor and does not require any special handling or additional resource requirements.

41



python-zstandard, Release 0.20.0

42 Chapter 7. Multi-Threaded Compression



CHAPTER 8

Dictionaries

8.1 ZstdCompressionDict

class zstandard.ZstdCompressionDict(data, dict_type=0, k=0, d=0)
Represents a computed compression dictionary.

Instances are obtained by calling train_dictionary() or by passing bytes obtained from another source
into the constructor.

Instances can be constructed from bytes:

>>> dict_data = zstandard.ZstdCompressionDict(data)

It is possible to construct a dictionary from any data. If the data doesn’t begin with a magic header, it will be
treated as a prefix dictionary. Prefix dictionaries allow compression operations to reference raw data within the
dictionary.

It is possible to force the use of prefix dictionaries or to require a dictionary header:

>>> dict_data = zstandard.ZstdCompressionDict(data, dict_type=zstandard.DICT_TYPE_
→˓RAWCONTENT)
>>> dict_data = zstandard.ZstdCompressionDict(data, dict_type=zstandard.DICT_TYPE_
→˓FULLDICT)

You can see how many bytes are in the dictionary by calling len():

>>> dict_data = zstandard.train_dictionary(size, samples)
>>> dict_size = len(dict_data) # will not be larger than ``size``

Once you have a dictionary, you can pass it to the objects performing compression and decompression:

>>> dict_data = zstandard.train_dictionary(131072, samples)
>>> cctx = zstandard.ZstdCompressor(dict_data=dict_data)
>>> for source_data in input_data:
... compressed = cctx.compress(source_data)

(continues on next page)

43



python-zstandard, Release 0.20.0

(continued from previous page)

... # Do something with compressed data.

...
>>> dctx = zstandard.ZstdDecompressor(dict_data=dict_data)
>>> for compressed_data in input_data:
... buffer = io.BytesIO()
... with dctx.stream_writer(buffer) as decompressor:
... decompressor.write(compressed_data)
... # Do something with raw data in ``buffer``.

Dictionaries have unique integer IDs. You can retrieve this ID via:

>>> dict_id = zstandard.dictionary_id(dict_data)

You can obtain the raw data in the dict (useful for persisting and constructing a ZstdCompressionDict
later) via as_bytes():

>>> dict_data = zstandard.train_dictionary(size, samples)
>>> raw_data = dict_data.as_bytes()

By default, when a ZstdCompressionDict is attached to a ZstdCompressor, each
ZstdCompressor performs work to prepare the dictionary for use. This is fine if only 1 compression
operation is being performed or if the ZstdCompressor is being reused for multiple operations. But if
multiple ZstdCompressor instances are being used with the dictionary, this can add overhead.

It is possible to precompute the dictionary so it can readily be consumed by multiple ZstdCompressor
instances:

>>> d = zstandard.ZstdCompressionDict(data)
>>> # Precompute for compression level 3.
>>> d.precompute_compress(level=3)
>>> # Precompute with specific compression parameters.
>>> params = zstandard.ZstdCompressionParameters(...)
>>> d.precompute_compress(compression_params=params)

Note: When a dictionary is precomputed, the compression parameters used to precompute the dictionary
overwrite some of the compression parameters specified to ZstdCompressor.

Parameters

• data – Dictionary data.

• dict_type – Type of dictionary. One of the DICT_TYPE_* constants.

as_bytes()
Obtain the bytes representation of the dictionary.

dict_id()
Obtain the integer ID of the dictionary.

precompute_compress(level=0, compression_params=None)
Precompute a dictionary os it can be used by multiple compressors.

Calling this method on an instance that will be used by multiple ZstdCompressor instances will im-
prove performance.

44 Chapter 8. Dictionaries



python-zstandard, Release 0.20.0

8.2 Training Dictionaries

Unless using prefix dictionaries, dictionary data is produced by training on existing data using the
train_dictionary() function.

zstandard.train_dictionary(dict_size, samples, k=0, d=0, f=0, split_point=0.0, accel=0, notifica-
tions=0, dict_id=0, level=0, steps=0, threads=0)

Train a dictionary from sample data using the COVER algorithm.

A compression dictionary of size dict_size will be created from the iterable of samples. The raw dictio-
nary bytes will be returned.

The dictionary training mechanism is known as cover. More details about it are available in the paper Effective
Construction of Relative Lempel-Ziv Dictionaries (authors: Liao, Petri, Moffat, Wirth).

The cover algorithm takes parameters k and d. These are the segment size and dmer size, respectively. The
returned dictionary instance created by this function has k and d attributes containing the values for these
parameters. If a ZstdCompressionDict is constructed from raw bytes data (a content-only dictionary), the
k and d attributes will be 0.

The segment and dmer size parameters to the cover algorithm can either be specified manually or
train_dictionary() can try multiple values and pick the best one, where best means the smallest com-
pressed data size. This later mode is called optimization mode.

Under the hood, this function always calls ZDICT_optimizeTrainFromBuffer_fastCover(). See
the corresponding C library documentation for more.

If neither steps nor threads is defined, defaults for d, steps, and level will be used that are equivalent
with what ZDICT_trainFromBuffer() would use.

Parameters

• dict_size – Target size in bytes of the dictionary to generate.

• samples – A list of bytes holding samples the dictionary will be trained from.

• k – Segment size : constraint: 0 < k : Reasonable range [16, 2048+]

• d – dmer size : constraint: 0 < d <= k : Reasonable range [6, 16]

• f – log of size of frequency array : constraint: 0 < f <= 31 : 1 means default(20)

• split_point – Percentage of samples used for training: Only used for optimization. The
first # samples * split_point samples will be used to training. The last # samples * (1
- split_point) samples will be used for testing. 0 means default (0.75), 1.0 when all samples
are used for both training and testing.

• accel – Acceleration level: constraint: 0 < accel <= 10. Higher means faster and less
accurate, 0 means default(1).

• dict_id – Integer dictionary ID for the produced dictionary. Default is 0, which uses a
random value.

• steps – Number of steps through k values to perform when trying parameter variations.

• threads – Number of threads to use when trying parameter variations. Default is 0, which
means to use a single thread. A negative value can be specified to use as many threads as
there are detected logical CPUs.

• level – Integer target compression level when trying parameter variations.

8.2. Training Dictionaries 45



python-zstandard, Release 0.20.0

• notifications – Controls writing of informational messages to stderr. 0 (the de-
fault) means to write nothing. 1 writes errors. 2 writes progression info. 3 writes more
details. And 4 writes all info.

46 Chapter 8. Dictionaries



CHAPTER 9

ZstdCompressionParameters

Zstandard offers a high-level compression level that maps to lower-level compression parameters. For many con-
sumers, this numeric level is the only compression setting you’ll need to touch.

But for advanced use cases, it might be desirable to tweak these lower-level settings.

The ZstdCompressionParameters type represents these low-level compression settings.

class zstandard.ZstdCompressionParameters(format=0, compression_level=0, win-
dow_log=0, hash_log=0, chain_log=0,
search_log=0, min_match=0, target_length=0,
strategy=-1, write_content_size=1,
write_checksum=0, write_dict_id=0,
job_size=0, overlap_log=-1,
force_max_window=0, enable_ldm=0,
ldm_hash_log=0, ldm_min_match=0,
ldm_bucket_size_log=0, ldm_hash_rate_log=-
1, threads=0)

Low-level zstd compression parameters.

This type represents a collection of parameters to control how zstd compression is performed.

Instances can be constructed from raw parameters or derived from a base set of defaults specified from a com-
pression level (recommended) via ZstdCompressionParameters.from_level().

>>> # Derive compression settings for compression level 7.
>>> params = zstandard.ZstdCompressionParameters.from_level(7)

>>> # With an input size of 1MB
>>> params = zstandard.ZstdCompressionParameters.from_level(7, source_
→˓size=1048576)

Using from_level(), it is also possible to override individual compression parameters or to define additional
settings that aren’t automatically derived. e.g.:

47



python-zstandard, Release 0.20.0

>>> params = zstandard.ZstdCompressionParameters.from_level(4, window_log=10)
>>> params = zstandard.ZstdCompressionParameters.from_level(5, threads=4)

Or you can define low-level compression settings directly:

>>> params = zstandard.ZstdCompressionParameters(window_log=12, enable_ldm=True)

Once a ZstdCompressionParameters instance is obtained, it can be used to configure a compressor:

>>> cctx = zstandard.ZstdCompressor(compression_params=params)

Some of these are very low-level settings. It may help to consult the official zstandard documentation for their
behavior. Look for the ZSTD_p_* constants in zstd.h (https://github.com/facebook/zstd/blob/dev/lib/zstd.h).

chain_log

compression_level

enable_ldm

estimated_compression_context_size()
Estimated size in bytes needed to compress with these parameters.

force_max_window

format

static from_level(level, source_size=0, dict_size=0, **kwargs)
Create compression parameters from a compression level.

Parameters

• level – Integer compression level.

• source_size – Integer size in bytes of source to be compressed.

• dict_size – Integer size in bytes of compression dictionary to use.

Returns ZstdCompressionParameters

hash_log

job_size

ldm_bucket_size_log

ldm_hash_log

ldm_hash_rate_log

ldm_min_match

min_match

overlap_log

search_log

strategy

target_length

threads

window_log

48 Chapter 9. ZstdCompressionParameters

https://github.com/facebook/zstd/blob/dev/lib/zstd.h


python-zstandard, Release 0.20.0

write_checksum

write_content_size

write_dict_id

49



python-zstandard, Release 0.20.0

50 Chapter 9. ZstdCompressionParameters



CHAPTER 10

Miscellaneous APIs

10.1 Frame Inspection

Data emitted from zstd compression is encapsulated in a frame. This frame begins with a 4 byte magic number header
followed by 2 to 14 bytes describing the frame in more detail. For more info, see https://github.com/facebook/zstd/
blob/master/doc/zstd_compression_format.md.

zstandard.get_frame_parameters(data)
Parse a zstd frame header into frame parameters.

Depending on which fields are present in the frame and their values, the length of the frame parameters varies.
If insufficient bytes are passed in to fully parse the frame parameters, ZstdError is raised. To ensure frame
parameters can be parsed, pass in at least 18 bytes.

Parameters data – Data from which to read frame parameters.

Returns FrameParameters

zstandard.frame_header_size(data)
Obtain the size of a frame header.

Returns Integer size in bytes.

zstandard.frame_content_size(data)
Obtain the decompressed size of a frame.

The returned value is usually accurate. But strictly speaking it should not be trusted.

Returns -1 if size unknown and a non-negative integer otherwise.

class zstandard.FrameParameters(fparams)
Information about a zstd frame.

Instances have the following attributes:

content_size Integer size of original, uncompressed content. This will be 0 if the original content size isn’t
written to the frame (controlled with the write_content_size argument to ZstdCompressor) or
if the input content size was 0.

51

https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md
https://github.com/facebook/zstd/blob/master/doc/zstd_compression_format.md


python-zstandard, Release 0.20.0

window_size Integer size of maximum back-reference distance in compressed data.

dict_id Integer of dictionary ID used for compression. 0 if no dictionary ID was used or if the dictionary ID
was 0.

has_checksum Bool indicating whether a 4 byte content checksum is stored at the end of the frame.

10.2 estimate_decompression_context_size()

zstandard.estimate_decompression_context_size()
Estimate the memory size requirements for a decompressor instance.

Returns Integer number of bytes.

10.3 open()

zstandard.open(filename, mode=’rb’, cctx=None, dctx=None, encoding=None, errors=None, new-
line=None, closefd=None)

Create a file object with zstd (de)compression.

The object returned from this function will be a ZstdDecompressionReader if opened for read-
ing in binary mode, a ZstdCompressionWriter if opened for writing in binary mode, or an io.
TextIOWrapper if opened for reading or writing in text mode.

Parameters

• filename – bytes, str, or os.PathLike defining a file to open or a file object (with
a read() or write() method).

• mode – str File open mode. Accepts any of the open modes recognized by open().

• cctx – ZstdCompressor to use for compression. If not specified and file is opened for
writing, the default ZstdCompressor will be used.

• dctx – ZstdDecompressor to use for decompression. If not specified and file is opened
for reading, the default ZstdDecompressor will be used.

• encoding – str that defines text encoding to use when file is opened in text mode.

• errors – str defining text encoding error handling mode.

• newline – str defining newline to use in text mode.

• closefd –

bool whether to close the file when the returned object is closed. Only used if a file
object is passed. If a filename is specified, the opened file is always closed when the
returned object is closed.

10.4 compress()

zstandard.compress(data: ByteString, level: int = 3)→ bytes
Compress source data using the zstd compression format.

This performs one-shot compression using basic/default compression settings.

52 Chapter 10. Miscellaneous APIs



python-zstandard, Release 0.20.0

This method is provided for convenience and is equivalent to calling ZstdCompressor(level=level).
compress(data).

If you find yourself calling this function in a tight loop, performance will be greater if you construct a single
ZstdCompressor and repeatedly call compress() on it.

10.5 decompress()

zstandard.decompress(data: ByteString, max_output_size: int = 0)→ bytes
Decompress a zstd frame into its original data.

This performs one-shot decompression using basic/default compression settings.

This method is provided for convenience and is equivalent to calling ZstdDecompressor().
decompress(data, max_output_size=max_output_size).

If you find yourself calling this function in a tight loop, performance will be greater if you construct a single
ZstdDecompressor and repeatedly call decompress() on it.

10.6 Constants

The following module constants/attributes are exposed:

ZSTD_VERSION This module attribute exposes a 3-tuple of the Zstandard version. e.g. (1, 0, 0)

MAX_COMPRESSION_LEVEL Integer max compression level accepted by compression functions

COMPRESSION_RECOMMENDED_INPUT_SIZE Recommended chunk size to feed to compressor functions

COMPRESSION_RECOMMENDED_OUTPUT_SIZE Recommended chunk size for compression output

DECOMPRESSION_RECOMMENDED_INPUT_SIZE Recommended chunk size to feed into decompresor functions

DECOMPRESSION_RECOMMENDED_OUTPUT_SIZE Recommended chunk size for decompression output

FRAME_HEADER bytes containing header of the Zstandard frame

MAGIC_NUMBER Frame header as an integer

FLUSH_BLOCK Flushing behavior that denotes to flush a zstd block. A decompressor will be able to decode all data
fed into the compressor so far.

FLUSH_FRAME Flushing behavior that denotes to end a zstd frame. Any new data fed to the compressor will start a
new frame.

CONTENTSIZE_UNKNOWN Value for content size when the content size is unknown.

CONTENTSIZE_ERROR Value for content size when content size couldn’t be determined.

WINDOWLOG_MIN Minimum value for compression parameter

WINDOWLOG_MAX Maximum value for compression parameter

CHAINLOG_MIN Minimum value for compression parameter

CHAINLOG_MAX Maximum value for compression parameter

HASHLOG_MIN Minimum value for compression parameter

HASHLOG_MAX Maximum value for compression parameter

SEARCHLOG_MIN Minimum value for compression parameter

10.5. decompress() 53



python-zstandard, Release 0.20.0

SEARCHLOG_MAX Maximum value for compression parameter

MINMATCH_MIN Minimum value for compression parameter

MINMATCH_MAX Maximum value for compression parameter

SEARCHLENGTH_MIN Minimum value for compression parameter

Deprecated: use MINMATCH_MIN

SEARCHLENGTH_MAX Maximum value for compression parameter

Deprecated: use MINMATCH_MAX

TARGETLENGTH_MIN Minimum value for compression parameter

STRATEGY_FAST Compression strategy

STRATEGY_DFAST Compression strategy

STRATEGY_GREEDY Compression strategy

STRATEGY_LAZY Compression strategy

STRATEGY_LAZY2 Compression strategy

STRATEGY_BTLAZY2 Compression strategy

STRATEGY_BTOPT Compression strategy

STRATEGY_BTULTRA Compression strategy

STRATEGY_BTULTRA2 Compression strategy

FORMAT_ZSTD1 Zstandard frame format

FORMAT_ZSTD1_MAGICLESS Zstandard frame format without magic header

54 Chapter 10. Miscellaneous APIs



CHAPTER 11

Buffer Types

The zstandard module exposes a handful of custom types for interfacing with memory buffers. The primary goal
of these types is to facilitate efficient multi-object operations.

The essential idea is to have a single memory allocation provide backing storage for multiple logical objects. This has
2 main advantages: fewer allocations and optimal memory access patterns. This avoids having to allocate a Python
object for each logical object and furthermore ensures that access of data for objects can be sequential (read: fast) in
memory.

11.1 BufferSegment

class zstandard.BufferSegment
Represents a segment within a BufferWithSegments.

This type is essentially a reference to N bytes within a BufferWithSegments.

The object conforms to the buffer protocol.

offset
The byte offset of this segment within its parent buffer.

tobytes()
Obtain bytes copy of this segment.

11.2 BufferSegments

class zstandard.BufferSegments
Represents an array of (offset, length) integers.

This type is effectively an index used by BufferWithSegments.

The array members are 64-bit unsigned integers using host/native bit order.

Instances conform to the buffer protocol.

55



python-zstandard, Release 0.20.0

11.3 BufferWithSegments

class zstandard.BufferWithSegments
A memory buffer containing N discrete items of known lengths.

This type is essentially a fixed size memory address and an array of 2-tuples of (offset, length) 64-bit
unsigned native-endian integers defining the byte offset and length of each segment within the buffer.

Instances behave like containers.

Instances also conform to the buffer protocol. So a reference to the backing bytes can be obtained via
memoryview(o). A copy of the backing bytes can be obtained via .tobytes().

This type exists to facilitate operations against N>1 items without the overhead of Python object creation
and management. Used with APIs like ZstdDecompressor.multi_decompress_to_buffer(), it
is possible to decompress many objects in parallel without the GIL held, leading to even better performance.

segments()
Obtain the array of (offset, length) segments in the buffer.

Returns BufferSegments

size
Total sizein bytes of the backing buffer.

tobytes()
Obtain bytes copy of this instance.

11.4 BufferWithSegmentsCollection

class zstandard.BufferWithSegmentsCollection
A virtual spanning view over multiple BufferWithSegments.

Instances are constructed from 1 or more BufferWithSegments instances. The resulting object behaves
like an ordered sequence whose members are the segments within each BufferWithSegments.

If the object is composed of 2 BufferWithSegments instances with the first having 2 segments and the
second have 3 segments, then b[0] and b[1] access segments in the first object and b[2], b[3], and b[4]
access segments from the second.

56 Chapter 11. Buffer Types



CHAPTER 12

Contributing

Once you have the source code, the extension can be built via setup.py:

$ python setup.py build_ext

We recommend testing with pytest:

$ pytest

Tests use the hypothesis Python package to perform fuzzing. If you don’t have it, those tests won’t run. Since
the fuzzing tests take longer to execute than normal tests, you’ll need to opt in to running them by setting the
ZSTD_SLOW_TESTS environment variable.

The cffi Python package needs to be installed in order to build the CFFI bindings. If it isn’t present, the CFFI
bindings won’t be built.

To create a virtualenv with all development dependencies, do something like the following:

$ python3 -m venv venv

$ source venv/bin/activate
$ pip install -r ci/requirements.txt

57



python-zstandard, Release 0.20.0

58 Chapter 12. Contributing



CHAPTER 13

Version History

13.1 1.0.0 (not yet released)

13.1.1 Actions Blocking Release

• Properly handle non-blocking I/O and partial writes for objects implementing io.RawIOBase.

• Consider making reads across frames configurable behavior.

• Overall API design review.

• Use Python allocator where possible.

• Figure out what to do about experimental APIs not implemented by CFFI.

• APIs for auto adjusting compression parameters based on input size. e.g. clamping the window log so it isn’t
too large for input.

• Consider allowing compressor and decompressor instances to be thread safe, support concurrent operations. Or
track when an operation is in progress and refuse to let concurrent operations use the same instance.

• Support for magic-less frames for all decompression operations (decompress() doesn’t work due to sniffing
the content size and the lack of a ZSTD API to sniff magic-less frames - this should be fixed in 1.3.5.).

• Audit for complete flushing when ending compression streams.

• Deprecate legacy APIs.

• Audit for ability to control read/write sizes on all APIs.

• Detect memory leaks via bench.py.

• Remove low-level compression parameters from ZstdCompressor.__init__ and require use of
ZstdCompressionParameters.

• Consider a chunker() API for decompression.

• Consider stats for chunker() API, including finding the last consumed offset of input data.

59



python-zstandard, Release 0.20.0

• Consider controls over resetting compression contexts (session only, parameters, or session and parameters).

• Utilize ZSTD_getDictID_fromCDict()?

• Stop relying on private libzstd headers and symbols (namely pool.h).

13.1.2 Other Actions Not Blocking Release

• Support for block compression APIs.

• API for ensuring max memory ceiling isn’t exceeded.

• Move off nose for testing.

13.2 0.20.0 (released 2023-02-20)

13.2.1 Backwards Compatibility Notes

• This will likely be the last release officially supporting Python 3.6. Python 3.6 is end of life as of 2021-12-23.

13.2.2 Changes

• Bundled zstd library upgraded from 1.5.2 to 1.5.4.

• Use of the deprecated ZSTD_copyDCtx() was removed from the C and Rust backends.

13.3 0.19.0 (released 2022-10-29)

13.3.1 Bug Fixes

• The C backend implementation of ZstdDecompressionObj.decompress() could have raised an asser-
tion in cases where the function was called multiple times on an instance. In non-debug builds, calls to this
method could have leaked memory.

13.3.2 Changes

• PyPy 3.6 support dropped; Pypy 3.8 and 3.9 support added.

• Anaconda 3.6 support dropped.

• Official support for Python 3.11. This did not require meaningful code changes and previous release(s) likely
worked with 3.11 without any changes.

• CFFI’s build system now respects distutils’s compiler.preprocessor if it is set. (#179)

• The internal logic of ZstdDecompressionObj.decompress() was refactored. This may have fixed
unconfirmed issues where unused_data was set prematurely. The new logic will also avoid an extra call to
ZSTD_decompressStream() in some scenarios, possibly improving performance.

• ZstdDecompressor.decompress() how has a read_across_frames keyword argument. It de-
faults to False. True is not yet implemented and will raise an exception if used. The new argument will default
to True in a future release and is provided now so callers can start passing read_across_frames=False
to preserve the existing functionality during a future upgrade.

60 Chapter 13. Version History



python-zstandard, Release 0.20.0

• ZstdDecompressor.decompress() now has an allow_extra_data keyword argument to control
whether an exception is raised if input contains extra data. It defaults to True, preserving existing behavior of
ignoring extra data. It will likely default to False in a future release. Callers desiring the current behavior are
encouraged to explicitly pass allow_extra_data=True so behavior won’t change during a future upgrade.

13.4 0.18.0 (released 2022-06-20)

13.4.1 Changes

• Bundled zstd library upgraded from 1.5.1 to 1.5.2.

• ZstdDecompressionObj now has an unused_data attribute. It will contain data beyond the fully de-
coded zstd frame data if said data exists.

• ZstdDecompressionObj now has an unconsumed_tail attribute. This attribute currently always re-
turns the empty bytes value (b"").

• ZstdDecompressionObj now has an eof attribute returning whether the compressed data has been fully
read.

13.5 0.17.0 (released 2021-01-18)

13.5.1 Backwards Compatibility Notes

• ZstdCompressionWriter and ZstdDecompressionWriter now implement __iter__() and
__next__(). The methods always raise io.UnsupportedOperation. The added methods are part
of the io.IOBase abstract base class / interface and help ensure instances look like other I/O types. (#167,
#168)

• The HASHLOG3_MAX constant has been removed since it is no longer defined in zstd 1.5.1.

13.5.2 Bug Fixes

• The ZstdCompressionReader, ZstdCompressionWriter, ZstdDecompressionReader, and
ZstdDecompressionWriter types in the C backend now tracks their closed attribute using the proper
C type. Before, due to a mismatch between the C struct type and the type declared to Python, Python could
read the wrong bits on platforms like s390x and incorrectly report the value of the closed attribute to Python.
(#105, #164)

13.5.3 Changes

• Bundled zstd library upgraded from 1.5.0 to 1.5.1.

• The C backend now exposes the symbols ZstdCompressionReader, ZstdCompressionWriter,
ZstdDecompressionReader, and ZstdDecompressionWriter. This should match the behavior of
the CFFI backend. (#165)

• ZstdCompressionWriter and ZstdDecompressionWriter now implement __iter__ and
__next__, which always raise io.UnsupportedOperation.

13.4. 0.18.0 (released 2022-06-20) 61



python-zstandard, Release 0.20.0

• Documentation on thread safety has been updated to note that derived objects like
ZstdCompressionWriter have the same thread unsafety as the contexts they were derived from.
(#166)

13.6 0.16.0 (released 2021-10-16)

13.6.1 Backwards Compatibility Notes

• Support for Python 3.5 has been dropped. Python 3.6 is now the minimum required Python version.

13.6.2 Changes

• Bundled zstd library upgraded from 1.4.8 to 1.5.0.

• manylinux2014_aarch64 wheels are now being produced for CPython 3.6+. (#145).

• Wheels are now being produced for CPython 3.10.

• Arguments to ZstdCompressor() and ZstdDecompressor() are now all optional in the C backend
and an explicit None value is accepted. Before, the C backend wouldn’t accept an explicit None value (but the
CFFI backend would). The new behavior should be consistent between the backends. (#153)

13.7 0.15.2 (released 2021-02-27)

13.7.1 Backwards Compatibility Notes

• ZstdCompressor.multi_compress_to_buffer() and ZstdDecompressor.
multi_decompress_to_buffer() are no longer available when linking against a system zstd
library. These experimental features are only available when building against the bundled single file zstd C
source file distribution. (#106)

13.7.2 Changes

• setup.py now recognizes a ZSTD_EXTRA_COMPILER_ARGS environment variable to specify additional
compiler arguments to use when compiling the C backend.

• PyPy build and test coverage has been added to CI.

• Added CI jobs for building against external zstd library.

• Wheels supporting macOS ARM/M1 devices are now being produced.

• References to Python 2 have been removed from the in-repo Debian packaging code.

• Significant work has been made on a Rust backend. It is currently feature complete but not yet optimized. We
are not yet shipping the backend as part of the distributed wheels until it is more mature.

• The .pyi type annotations file has replaced various default argument values with ....

62 Chapter 13. Version History



python-zstandard, Release 0.20.0

13.8 0.15.1 (released 2020-12-31)

13.8.1 Bug Fixes

• setup.py no longer attempts to build the C backend on PyPy. (#130)

• <sys/types.h> is now included before <sys/sysctl.h>. This was the case in releases prior to 0.15.0
and the include order was reversed as part of running clang-format. The old/working order has been
restored. (#128)

• Include some private zstd C headers so we can build the C extension against a system library. The previous
behavior of referencing these headers is restored. That behave is rather questionable and undermines the desire
to use the system zstd.

13.9 0.15.0 (released 2020-12-29)

13.9.1 Backwards Compatibility Notes

• Support for Python 2.7 has been dropped. Python 3.5 is now the minimum required Python version. (#109)

• train_dictionary() now uses the fastcover training mechanism (as opposed to cover). Some pa-
rameter values that worked with the old mechanism may not work with the new one. e.g. d must be 6 or 8 if it
is defined.

• train_dictionary() now always calls ZDICT_optimizeTrainFromBuffer_fastCover() in-
stead of different APIs depending on which arguments were passed.

• The names of various Python modules have been changed. The C extension is now built as zstandard.
backend_c instead of zstd. The CFFI extension module is now built as zstandard._cffi instead of
_zstd_cffi. The CFFI backend is now zstandard.backend_cffi instead of zstandard.cffi.

• ZstdDecompressionReader.seekable() now returns False instead of True because not all seek
operations are supported and some Python code in the wild keys off this value to determine if seek() can be
called for all scenarios.

• ZstdDecompressionReader.seek() now raises OSError instead of ValueError when the seek
cannot be fulfilled. (#107)

• ZstdDecompressionReader.readline() and ZstdDecompressionReader.readlines()
now accept an integer argument. This makes them conform with the IO interface. The methods still raise
io.UnsupportedOperation.

• ZstdCompressionReader.__enter__ and ZstdDecompressionReader.__enter__ now raise
ValueError if the instance was already closed.

• The deprecated overlap_size_log attribute on ZstdCompressionParameters instances has been
removed. The overlap_log attribute should be used instead.

• The deprecated overlap_size_log argument to ZstdCompressionParameters has been removed.
The overlap_log argument should be used instead.

• The deprecated ldm_hash_every_log attribute on ZstdCompressionParameters instances has been
removed. The ldm_hash_rate_log attribute should be used instead.

• The deprecated ldm_hash_every_log argument to ZstdCompressionParameters has been re-
moved. The ldm_hash_rate_log argument should be used instead.

13.8. 0.15.1 (released 2020-12-31) 63



python-zstandard, Release 0.20.0

• The deprecated CompressionParameters type alias to ZstdCompressionParamaters has been re-
moved. Use ZstdCompressionParameters.

• The deprecated aliases ZstdCompressor.read_from() and ZstdDecompressor.read_from()
have been removed. Use the corresponding read_to_iter() methods instead.

• The deprecated aliases ZstdCompressor.write_to() and ZstdDecompressor.write_to() have
been removed. Use the corresponding stream_writer() methods instead.

• ZstdCompressor.copy_stream(), ZstdCompressorIterator.__next__(), and
ZstdDecompressor.copy_stream() now raise the original exception on error calling the source
stream’s read() instead of raising ZstdError. This only affects the C backend.

• ZstdDecompressionObj.flush() now returns bytes instead of None. This makes it behave more
similarly to flush() methods for similar types in the Python standard library. (#78)

• ZstdCompressionWriter.__exit__() now always calls close(). Previously, close() would not
be called if the context manager raised an exception. The old behavior was inconsistent with other stream types
in this package and with the behavior of Python’s standard library IO types. (#86)

• Distribution metadata no longer lists cffi as an install_requires except when running on PyPy. Instead,
cffi is listed as an extras_require.

• ZstdCompressor.stream_reader() and ZstdDecompressor.stream_reader() now default
to closing the source stream when the instance is itself closed. To change this behavior, pass closefd=False.
(#76)

• The CFFI backend now defines ZstdCompressor.multi_compress_to_buffer()
and ZstdDecompressor.multi_decompress_to_buffer(). However, they raise
NotImplementedError, as they are not yet implemented.

• The CFFI backend now exposes the types ZstdCompressionChunker, ZstdCompressionObj,
ZstdCompressionReader, ZstdCompressionWriter, ZstdDecompressionObj,
ZstdDecompressionReader, and ZstdDecompressionWriter as symbols on the zstandard
module.

• The CFFI backend now exposes the types BufferSegment, BufferSegments,
BufferWithSegments, and BufferWithSegmentsCollection. However, they are not imple-
mented.

• ZstdCompressionWriter.flush() now calls flush() on the inner stream if such a method exists.
However, when close() itself calls self.flush(), flush() is not called on the inner stream.

• ZstdDecompressionWriter.close() no longer calls flush() on the inner stream. However,
ZstdDecompressionWriter.flush() still calls flush() on the inner stream.

• ZstdCompressor.stream_writer() and ZstdDecompressor.stream_writer() now have
their write_return_read argument default to True. This brings the behavior of write() in compli-
ance with the io.RawIOBase interface by default. The argument may be removed in a future release.

• ZstdCompressionParameters no longer exposes a compression_strategy property. Its construc-
tor no longer accepts a compression_strategy argument. Use the strategy property/argument instead.

13.9.2 Bug Fixes

• Fix a memory leak in stream_reader decompressor when reader is closed before reading everything. (Patch
by Pierre Fersing.)

• The C backend now properly checks for errors after calling IO methods on inner streams in various meth-
ods. ZstdCompressionWriter.write() now catches exceptions when calling the inner stream’s

64 Chapter 13. Version History



python-zstandard, Release 0.20.0

write(). ZstdCompressionWriter.flush() on inner stream’s write(). ZstdCompressor.
copy_stream() on dest stream’s write(). ZstdDecompressionWriter.write() on inner
stream’s write(). ZstdDecompressor.copy_stream() on dest stream’s write(). (#102)

13.9.3 Changes

• Bundled zstandard library upgraded from 1.4.5 to 1.4.8.

• The bundled zstandard library is now using the single C source file distribution. The 2 main header files are still
present, as these are needed by CFFI to generate the CFFI bindings.

• PyBuffer instances are no longer checked to be C contiguous and have a single dimension. The former was
redundant with what PyArg_ParseTuple() already did and the latter is not necessary in practice because
very few extension modules create buffers with more than 1 dimension. (#124)

• Added Python typing stub file for the zstandard module. (#120)

• The make_cffi.py script should now respect the CC environment variable for locating the compiler. (#103)

• CI now properly uses the cffi backend when running all tests.

• train_dictionary() has been rewritten to use the fastcover APIs and to consistently call
ZDICT_optimizeTrainFromBuffer_fastCover() instead of different C APIs depending on what
arguments were passed. The function also now accepts arguments f, split_point, and accel, which are
parameters unique to fastcover.

• CI now tests and builds wheels for Python 3.9.

• zstd.c file renamed to c-ext/backend_c.c.

• All built/installed Python modules are now in the zstandard package. Previously, there were modules in
other packages. (#115)

• C source code is now automatically formatted with clang-format.

• ZstdCompressor.stream_writer(), ZstdCompressor.stream_reader(),
ZstdDecompressor.stream_writer(), and ZstdDecompressor.stream_reader()
now accept a closefd argument to control whether the underlying stream should be closed when
the ZstdCompressionWriter, ZstdCompressReader, ZstdDecompressionWriter, or
ZstdDecompressionReader is closed. (#76)

• There is now a zstandard.open() function for returning a file object with zstd (de)compression. (#64)

• The zstandard module now exposes a backend_features attribute containing a set of strings denoting
optional features present in that backend. This can be used to sniff feature support by performing a string lookup
instead of sniffing for API presence or behavior.

• Python docstrings have been moved from the C backend to the CFFI backend. Sphinx docs have been updated
to generate API documentation via the CFFI backend. Documentation for Python APIs is now fully defined via
Python docstrings instead of spread across Sphinx ReST files and source code.

• ZstdCompressionParameters now exposes a strategy property.

• There are now compress() and decompress() convenience functions on the zstandard module. These
are simply wrappers around the corresponding APIs on ZstdCompressor and ZstdDecompressor.

13.9. 0.15.0 (released 2020-12-29) 65



python-zstandard, Release 0.20.0

13.10 0.14.1 (released 2020-12-05)

13.10.1 Changes

• Python 3.9 wheels are now provided.

13.11 0.14.0 (released 2020-06-13)

13.11.1 Backwards Compatibility Notes

• This will likely be the final version supporting Python 2.7. Future releases will likely only work on Python 3.5+.
See #109 for more context.

• There is a significant possibility that future versions will use Rust - instead of C - for compiled code. See #110
for more context.

13.11.2 Bug Fixes

• Some internal fields of C structs are now explicitly initialized. (Possible fix for #105.)

• The make_cffi.py script used to build the CFFI bindings now calls distutils.sysconfig.
customize_compiler() so compiler customizations (such as honoring the CC environment variable) are
performed. Patch by @Arfrever. (#103)

• The make_cffi.py script now sets LC_ALL=C when invoking the preprocessor in an attempt to normalize
output to ASCII. (#95)

13.11.3 Changes

• Bundled zstandard library upgraded from 1.4.4 to 1.4.5.

• setup.py is now executable.

• Python code reformatted with black using 80 character line lengths.

13.12 0.13.0 (released 2019-12-28)

13.12.1 Changes

• pytest-xdist pytest extension is now installed so tests can be run in parallel.

• CI now builds manylinux2010 and manylinux2014 binary wheels instead of a mix of manylinux2010
and manylinux1.

• Official support for Python 3.8 has been added.

• Bundled zstandard library upgraded from 1.4.3 to 1.4.4.

• Python code has been reformatted with black.

66 Chapter 13. Version History



python-zstandard, Release 0.20.0

13.13 0.12.0 (released 2019-09-15)

13.13.1 Backwards Compatibility Notes

• Support for Python 3.4 has been dropped since Python 3.4 is no longer a supported Python version upstream.
(But it will likely continue to work until Python 2.7 support is dropped and we port to Python 3.5+ APIs.)

13.13.2 Bug Fixes

• Fix ZstdDecompressor.__init__ on 64-bit big-endian systems (#91).

• Fix memory leak in ZstdDecompressionReader.seek() (#82).

13.13.3 Changes

• CI transitioned to Azure Pipelines (from AppVeyor and Travis CI).

• Switched to pytest for running tests (from nose).

• Bundled zstandard library upgraded from 1.3.8 to 1.4.3.

13.14 0.11.1 (released 2019-05-14)

• Fix memory leak in ZstdDecompressionReader.seek() (#82).

13.15 0.11.0 (released 2019-02-24)

13.15.1 Backwards Compatibility Notes

• ZstdDecompressor.read() now allows reading sizes of -1 or 0 and defaults to -1, per the documented
behavior of io.RawIOBase.read(). Previously, we required an argument that was a positive value.

• The readline(), readlines(), __iter__, and __next__ methods of
ZstdDecompressionReader() now raise io.UnsupportedOperation instead of
NotImplementedError.

• ZstdDecompressor.stream_reader() now accepts a read_across_frames argument. The de-
fault value will likely be changed in a future release and consumers are advised to pass the argument to avoid
unwanted change of behavior in the future.

• setup.py now always disables the CFFI backend if the installed CFFI package does not meet the minimum
version requirements. Before, it was possible for the CFFI backend to be generated and a run-time error to
occur.

• In the CFFI backend, CompressionReader and DecompressionReader were renamed to
ZstdCompressionReader and ZstdDecompressionReader, respectively so naming is identical to
the C extension. This should have no meaningful end-user impact, as instances aren’t meant to be constructed
directly.

13.13. 0.12.0 (released 2019-09-15) 67



python-zstandard, Release 0.20.0

• ZstdDecompressor.stream_writer() now accepts a write_return_read argument to control
whether write() returns the number of bytes read from the source / written to the decompressor. It defaults
to off, which preserves the existing behavior of returning the number of bytes emitted from the decompressor.
The default will change in a future release so behavior aligns with the specified behavior of io.RawIOBase.

• ZstdDecompressionWriter.__exit__ now calls self.close(). This will result in that stream
plus the underlying stream being closed as well. If this behavior is not desirable, do not use instances as context
managers.

• ZstdCompressor.stream_writer() now accepts a write_return_read argument to control
whether write() returns the number of bytes read from the source / written to the compressor. It defaults
to off, which preserves the existing behavior of returning the number of bytes emitted from the compressor. The
default will change in a future release so behavior aligns with the specified behavior of io.RawIOBase.

• ZstdCompressionWriter.__exit__ now calls self.close(). This will result in that stream plus
any underlying stream being closed as well. If this behavior is not desirable, do not use instances as context
managers.

• ZstdDecompressionWriter no longer requires being used as a context manager (#57).

• ZstdCompressionWriter no longer requires being used as a context manager (#57).

• The overlap_size_log attribute on CompressionParameters instances has been deprecated and will
be removed in a future release. The overlap_log attribute should be used instead.

• The overlap_size_log argument to CompressionParameters has been deprecated and will be re-
moved in a future release. The overlap_log argument should be used instead.

• The ldm_hash_every_log attribute on CompressionParameters instances has been deprecated and
will be removed in a future release. The ldm_hash_rate_log attribute should be used instead.

• The ldm_hash_every_log argument to CompressionParameters has been deprecated and will be
removed in a future release. The ldm_hash_rate_log argument should be used instead.

• The compression_strategy argument to CompressionParameters has been deprecated and will be
removed in a future release. The strategy argument should be used instead.

• The SEARCHLENGTH_MIN and SEARCHLENGTH_MAX constants are deprecated and will be removed in a
future release. Use MINMATCH_MIN and MINMATCH_MAX instead.

• The zstd_cffi module has been renamed to zstandard.cffi. As had been documented in the README
file since the 0.9.0 release, the module should not be imported directly at its new location. Instead, import
zstandard to cause an appropriate backend module to be loaded automatically.

13.15.2 Bug Fixes

• CFFI backend could encounter a failure when sending an empty chunk into ZstdDecompressionObj.
decompress(). The issue has been fixed.

• CFFI backend could encounter an error when calling ZstdDecompressionReader.read() if there was
data remaining in an internal buffer. The issue has been fixed. (#71)

13.15.3 Changes

• ZstDecompressionObj.decompress() now properly handles empty inputs in the CFFI backend.

• ZstdCompressionReader now implements read1() and readinto1(). These are part of the io.
BufferedIOBase interface.

68 Chapter 13. Version History



python-zstandard, Release 0.20.0

• ZstdCompressionReader has gained a readinto(b) method for reading compressed output into an
existing buffer.

• ZstdCompressionReader.read() now defaults to size=-1 and accepts read sizes of -1 and 0. The
new behavior aligns with the documented behavior of io.RawIOBase.

• ZstdCompressionReader now implements readall(). Previously, this method raised
NotImplementedError.

• ZstdDecompressionReader now implements read1() and readinto1(). These are part of the io.
BufferedIOBase interface.

• ZstdDecompressionReader.read() now defaults to size=-1 and accepts read sizes of -1 and 0.
The new behavior aligns with the documented behavior of io.RawIOBase.

• ZstdDecompressionReader() now implements readall(). Previously, this method raised
NotImplementedError.

• The readline(), readlines(), __iter__, and __next__ methods of
ZstdDecompressionReader() now raise io.UnsupportedOperation instead of
NotImplementedError. This reflects a decision to never implement text-based I/O on (de)compressors
and keep the low-level API operating in the binary domain. (#13)

• README.rst now documented how to achieve linewise iteration using an io.TextIOWrapper with a
ZstdDecompressionReader.

• ZstdDecompressionReader has gained a readinto(b) method for reading decompressed output into
an existing buffer. This allows chaining to an io.TextIOWrapper on Python 3 without using an io.
BufferedReader.

• ZstdDecompressor.stream_reader() now accepts a read_across_frames argument to control
behavior when the input data has multiple zstd frames. When False (the default for backwards compatibility),
a read() will stop when the end of a zstd frame is encountered. When True, read() can potentially return
data spanning multiple zstd frames. The default will likely be changed to True in a future release.

• setup.py now performs CFFI version sniffing and disables the CFFI backend if CFFI is too old. Previously,
we only used install_requires to enforce the CFFI version and not all build modes would properly
enforce the minimum CFFI version. (#69)

• CFFI’s ZstdDecompressionReader.read() now properly handles data remaining in any internal buffer.
Before, repeated read() could result in random errors. (#71)

• Upgraded various Python packages in CI environment.

• Upgrade to hypothesis 4.5.11.

• In the CFFI backend, CompressionReader and DecompressionReader were renamed to
ZstdCompressionReader and ZstdDecompressionReader, respectively.

• ZstdDecompressor.stream_writer() now accepts a write_return_read argument to control
whether write() returns the number of bytes read from the source. It defaults to False to preserve backwards
compatibility.

• ZstdDecompressor.stream_writer() now implements the io.RawIOBase interface and behaves
as a proper stream object.

• ZstdCompressor.stream_writer() now accepts a write_return_read argument to control
whether write() returns the number of bytes read from the source. It defaults to False to preserve back-
wards compatibility.

• ZstdCompressionWriter now implements the io.RawIOBase interface and behaves as a proper stream
object. close() will now close the stream and the underlying stream (if possible). __exit__ will now call
close(). Methods like writable() and fileno() are implemented.

13.15. 0.11.0 (released 2019-02-24) 69



python-zstandard, Release 0.20.0

• ZstdDecompressionWriter no longer must be used as a context manager.

• ZstdCompressionWriter no longer must be used as a context manager. When not using as a context man-
ager, it is important to call flush(FRAME_FRAME) or the compression stream won’t be properly terminated
and decoders may complain about malformed input.

• ZstdCompressionWriter.flush() (what is returned from ZstdCompressor.
stream_writer()) now accepts an argument controlling the flush behavior. Its value can be one of
the new constants FLUSH_BLOCK or FLUSH_FRAME.

• ZstdDecompressionObj instances now have a flush([length=None]) method. This provides parity
with standard library equivalent types. (#65)

• CompressionParameters no longer redundantly store individual compression parameters on each in-
stance. Instead, compression parameters are stored inside the underlying ZSTD_CCtx_params instance.
Attributes for obtaining parameters are now properties rather than instance variables.

• Exposed the STRATEGY_BTULTRA2 constant.

• CompressionParameters instances now expose an overlap_log attribute. This behaves identically to
the overlap_size_log attribute.

• CompressionParameters() now accepts an overlap_log argument that behaves identically to the
overlap_size_log argument. An error will be raised if both arguments are specified.

• CompressionParameters instances now expose an ldm_hash_rate_log attribute. This behaves iden-
tically to the ldm_hash_every_log attribute.

• CompressionParameters() now accepts a ldm_hash_rate_log argument that behaves identically to
the ldm_hash_every_log argument. An error will be raised if both arguments are specified.

• CompressionParameters() now accepts a strategy argument that behaves identically to the
compression_strategy argument. An error will be raised if both arguments are specified.

• The MINMATCH_MIN and MINMATCH_MAX constants were added. They are semantically equivalent to the old
SEARCHLENGTH_MIN and SEARCHLENGTH_MAX constants.

• Bundled zstandard library upgraded from 1.3.7 to 1.3.8.

• setup.py denotes support for Python 3.7 (Python 3.7 was supported and tested in the 0.10 release).

• zstd_cffi module has been renamed to zstandard.cffi.

• ZstdCompressor.stream_writer() now reuses a buffer in order to avoid allocating a new buffer for
every operation. This should result in faster performance in cases where write() or flush() are being
called frequently. (#62)

• Bundled zstandard library upgraded from 1.3.6 to 1.3.7.

13.16 0.10.2 (released 2018-11-03)

13.16.1 Bug Fixes

• zstd_cffi.py added to setup.py (#60).

13.16.2 Changes

• Change some integer casts to avoid ssize_t (#61).

70 Chapter 13. Version History



python-zstandard, Release 0.20.0

13.17 0.10.1 (released 2018-10-08)

13.17.1 Backwards Compatibility Notes

• ZstdCompressor.stream_reader().closed is now a property instead of a method (#58).

• ZstdDecompressor.stream_reader().closed is now a property instead of a method (#58).

13.17.2 Changes

• Stop attempting to package Python 3.6 for Miniconda. The latest version of Miniconda is using Python 3.7. The
Python 3.6 Miniconda packages were a lie since this were built against Python 3.7.

• ZstdCompressor.stream_reader()’s and ZstdDecompressor.stream_reader()’s closed
attribute is now a read-only property instead of a method. This now properly matches the IOBase API and
allows instances to be used in more places that accept IOBase instances.

13.18 0.10.0 (released 2018-10-08)

13.18.1 Backwards Compatibility Notes

• ZstdDecompressor.stream_reader().read() now consistently requires an argument in both the C
and CFFI backends. Before, the CFFI implementation would assume a default value of -1, which was later
rejected.

• The compress_literals argument and attribute has been removed from zstd.
ZstdCompressionParameters because it was removed by the zstd 1.3.5 API.

• ZSTD_CCtx_setParametersUsingCCtxParams() is no longer called on every operation per-
formed against ZstdCompressor instances. The reason for this change is that the zstd 1.3.5 API
no longer allows this without calling ZSTD_CCtx_resetParameters() first. But if we called
ZSTD_CCtx_resetParameters() on every operation, we’d have to redo potentially expensive setup when
using dictionaries. We now call ZSTD_CCtx_reset() on every operation and don’t attempt to change com-
pression parameters.

• Objects returned by ZstdCompressor.stream_reader() no longer need to be used as a context man-
ager. The context manager interface still exists and its behavior is unchanged.

• Objects returned by ZstdDecompressor.stream_reader() no longer need to be used as a context
manager. The context manager interface still exists and its behavior is unchanged.

13.18.2 Bug Fixes

• ZstdDecompressor.decompressobj().decompress() should now return all data from inter-
nal buffers in more scenarios. Before, it was possible for data to remain in internal buffers. This
data would be emitted on a subsequent call to decompress(). The overall output stream would still
be valid. But if callers were expecting input data to exactly map to output data (say the producer
had used flush(COMPRESSOBJ_FLUSH_BLOCK) and was attempting to map input chunks to out-
put chunks), then the previous behavior would be wrong. The new behavior is such that output from
flush(COMPRESSOBJ_FLUSH_BLOCK) fed into decompressobj().decompress() should produce
all available compressed input.

13.17. 0.10.1 (released 2018-10-08) 71



python-zstandard, Release 0.20.0

• ZstdDecompressor.stream_reader().read() should no longer segfault after a previous context
manager resulted in error (#56).

• ZstdCompressor.compressobj().flush(COMPRESSOBJ_FLUSH_BLOCK) now returns all data
necessary to flush a block. Before, it was possible for the flush() to not emit all data necessary to fully
represent a block. This would mean decompressors wouldn’t be able to decompress all data that had been fed
into the compressor and flush()’ed. (#55).

13.18.3 New Features

• New module constants BLOCKSIZELOG_MAX, BLOCKSIZE_MAX, TARGETLENGTH_MAX that expose con-
stants from libzstd.

• New ZstdCompressor.chunker() API for manually feeding data into a compressor and emitting chunks
of a fixed size. Like compressobj(), the API doesn’t impose restrictions on the input or output types for
the data streams. Unlike compressobj(), it ensures output chunks are of a fixed size. This makes this API
useful when the compressed output is being fed into an I/O layer, where uniform write sizes are useful.

• ZstdCompressor.stream_reader() no longer needs to be used as a context manager (#34).

• ZstdDecompressor.stream_reader() no longer needs to be used as a context manager (#34).

• Bundled zstandard library upgraded from 1.3.4 to 1.3.6.

13.18.4 Changes

• Added zstd_cffi.py and NEWS.rst to MANIFEST.in.

• zstandard.__version__ is now defined (#50).

• Upgrade pip, setuptools, wheel, and cibuildwheel packages to latest versions.

• Upgrade various packages used in CI to latest versions. Notably tox (in order to support Python 3.7).

• Use relative paths in setup.py to appease Python 3.7 (#51).

• Added CI for Python 3.7.

13.19 0.9.1 (released 2018-06-04)

• Debian packaging support.

• Fix typo in setup.py (#44).

• Support building with mingw compiler (#46).

13.20 0.9.0 (released 2018-04-08)

13.20.1 Backwards Compatibility Notes

• CFFI 1.11 or newer is now required (previous requirement was 1.8).

• The primary module is now zstandard. Please change imports of zstd and zstd_cffi to import
zstandard. See the README for more. Support for importing the old names will be dropped in the next
release.

72 Chapter 13. Version History



python-zstandard, Release 0.20.0

• ZstdCompressor.read_from() and ZstdDecompressor.read_from() have been renamed to
read_to_iter(). read_from() is aliased to the new name and will be deleted in a future release.

• Support for Python 2.6 has been removed.

• Support for Python 3.3 has been removed.

• The selectivity argument to train_dictionary() has been removed, as the feature disappeared from
zstd 1.3.

• Support for legacy dictionaries has been removed. Cover dictionaries are now the default.
train_cover_dictionary() has effectively been renamed to train_dictionary().

• The allow_empty argument from ZstdCompressor.compress() has been deleted and the method
now allows empty inputs to be compressed by default.

• estimate_compression_context_size() has been removed. Use CompressionParameters.
estimated_compression_context_size() instead.

• get_compression_parameters() has been removed. Use CompressionParameters.
from_level() instead.

• The arguments to CompressionParameters.__init__() have changed. If you were using positional
arguments before, the positions now map to different arguments. It is recommended to use keyword arguments
to construct CompressionParameters instances.

• TARGETLENGTH_MAX constant has been removed (it disappeared from zstandard 1.3.4).

• ZstdCompressor.write_to() and ZstdDecompressor.write_to() have been renamed to
ZstdCompressor.stream_writer() and ZstdDecompressor.stream_writer(), respectively.
The old names are still aliased, but will be removed in the next major release.

• Content sizes are written into frame headers by default (ZstdCompressor(write_content_size=True)
is now the default).

• CompressionParameters has been renamed to ZstdCompressionParameters for consistency with
other types. The old name is an alias and will be removed in the next major release.

13.20.2 Bug Fixes

• Fixed memory leak in ZstdCompressor.copy_stream() (#40) (from 0.8.2).

• Fixed memory leak in ZstdDecompressor.copy_stream() (#35) (from 0.8.2).

• Fixed memory leak of ZSTD_DDict instances in CFFI’s ZstdDecompressor.

13.20.3 New Features

• Bundled zstandard library upgraded from 1.1.3 to 1.3.4. This delivers various bug fixes and performance im-
provements. It also gives us access to newer features.

• Support for negative compression levels.

• Support for long distance matching (facilitates compression ratios that approach LZMA).

• Supporting for reading empty zstandard frames (with an embedded content size of 0).

• Support for writing and partial support for reading zstandard frames without a magic header.

• New stream_reader() API that exposes the io.RawIOBase interface (allows you to .read() from a
file-like object).

13.20. 0.9.0 (released 2018-04-08) 73



python-zstandard, Release 0.20.0

• Several minor features, bug fixes, and performance enhancements.

• Wheels for Linux and macOS are now provided with releases.

13.20.4 Changes

• Functions accepting bytes data now use the buffer protocol and can accept more types (like memoryview and
bytearray) (#26).

• Add #includes so compilation on OS X and BSDs works (#20).

• New ZstdDecompressor.stream_reader() API to obtain a read-only i/o stream of decompressed data
for a source.

• New ZstdCompressor.stream_reader() API to obtain a read-only i/o stream of compressed data for
a source.

• Renamed ZstdDecompressor.read_from() to ZstdDecompressor.read_to_iter(). The old
name is still available.

• Renamed ZstdCompressor.read_from() to ZstdCompressor.read_to_iter().
read_from() is still available at its old location.

• Introduce the zstandard module to import and re-export the C or CFFI backend as appropriate. Behavior
can be controlled via the PYTHON_ZSTANDARD_IMPORT_POLICY environment variable. See README for
usage info.

• Vendored version of zstd upgraded to 1.3.4.

• Added module constants CONTENTSIZE_UNKNOWN and CONTENTSIZE_ERROR.

• Add STRATEGY_BTULTRA compression strategy constant.

• Switch from deprecated ZSTD_getDecompressedSize() to ZSTD_getFrameContentSize() re-
placement.

• ZstdCompressor.compress() can now compress empty inputs without requiring special handling.

• ZstdCompressor and ZstdDecompressor now have a memory_size() method for determining the
current memory utilization of the underlying zstd primitive.

• train_dictionary() has new arguments and functionality for trying multiple variations of COVER pa-
rameters and selecting the best one.

• Added module constants LDM_MINMATCH_MIN, LDM_MINMATCH_MAX, and
LDM_BUCKETSIZELOG_MAX.

• Converted all consumers to the zstandard new advanced API, which uses ZSTD_compress_generic()

• CompressionParameters.__init__ now accepts several more arguments, including support for long
distance matching.

• ZstdCompressionDict.__init__ now accepts a dict_type argument that controls how the dictio-
nary should be interpreted. This can be used to force the use of content-only dictionaries or to require the
presence of the dictionary magic header.

• ZstdCompressionDict.precompute_compress() can be used to precompute the compression dic-
tionary so it can efficiently be used with multiple ZstdCompressor instances.

• Digested dictionaries are now stored in ZstdCompressionDict instances, created automatically on first
use, and automatically reused by all ZstdDecompressor instances bound to that dictionary.

• All meaningful functions now accept keyword arguments.

74 Chapter 13. Version History



python-zstandard, Release 0.20.0

• ZstdDecompressor.decompressobj() now accepts a write_size argument to control how much
work to perform on every decompressor invocation.

• ZstdCompressor.write_to() now exposes a tell(), which exposes the total number of bytes written
so far.

• ZstdDecompressor.stream_reader() now supports seek() when moving forward in the stream.

• Removed TARGETLENGTH_MAX constant.

• Added frame_header_size(data) function.

• Added frame_content_size(data) function.

• Consumers of ZSTD_decompress* have been switched to the new advanced decompression API.

• ZstdCompressor and ZstdCompressionParams can now be constructed with negative compression
levels.

• ZstdDecompressor now accepts a max_window_size argument to limit the amount of memory required
for decompression operations.

• FORMAT_ZSTD1 and FORMAT_ZSTD1_MAGICLESS constants to be used with the format compression
parameter to control whether the frame magic header is written.

• ZstdDecompressor now accepts a format argument to control the expected frame format.

• ZstdCompressor now has a frame_progression() method to return information about the current
compression operation.

• Error messages in CFFI no longer have b'' literals.

• Compiler warnings and underlying overflow issues on 32-bit platforms have been fixed.

• Builds in CI now build with compiler warnings as errors. This should hopefully fix new compiler warnings from
being introduced.

• Make ZstdCompressor(write_content_size=True) and CompressionParameters(write_content_size=True)
the default.

• CompressionParameters has been renamed to ZstdCompressionParameters.

13.20.5 0.8.2 (released 2018-02-22)

• Fixed memory leak in ZstdCompressor.copy_stream() (#40).

• Fixed memory leak in ZstdDecompressor.copy_stream() (#35).

13.20.6 0.8.1 (released 2017-04-08)

• Add #includes so compilation on OS X and BSDs works (#20).

13.21 0.8.0 (released 2017-03-08)

• CompressionParameters now has a estimated_compression_context_size() method.
zstd.estimate_compression_context_size() is now deprecated and slated for removal.

• Implemented a lot of fuzzing tests.

13.21. 0.8.0 (released 2017-03-08) 75



python-zstandard, Release 0.20.0

• CompressionParameters instances now perform extra validation by calling ZSTD_checkCParams() at construc-
tion time.

• multi_compress_to_buffer() API for compressing multiple inputs as a single operation, as efficiently as possible.

• ZSTD_CStream instances are now used across multiple operations on ZstdCompressor instances, resulting in
much better performance for APIs that do streaming.

• ZSTD_DStream instances are now used across multiple operations on ZstdDecompressor instances, resulting in
much better performance for APIs that do streaming.

• train_dictionary() now releases the GIL.

• Support for training dictionaries using the COVER algorithm.

• multi_decompress_to_buffer() API for decompressing multiple frames as a single operation, as efficiently as
possible.

• Support for multi-threaded compression.

• Disable deprecation warnings when compiling CFFI module.

• Fixed memory leak in train_dictionary().

• Removed DictParameters type.

• train_dictionary() now accepts keyword arguments instead of a DictParameters instance to control dictionary
generation.

13.22 0.7.0 (released 2017-02-07)

• Added zstd.get_frame_parameters() to obtain info about a zstd frame.

• Added ZstdDecompressor.decompress_content_dict_chain() for efficient decompression of content-only dictio-
nary chains.

• CFFI module fully implemented; all tests run against both C extension and CFFI implementation.

• Vendored version of zstd updated to 1.1.3.

• Use ZstdDecompressor.decompress() now uses ZSTD_createDDict_byReference() to avoid extra memory allo-
cation of dict data.

• Add function names to error messages (by using “:name” in PyArg_Parse* functions).

• Reuse decompression context across operations. Previously, we created a new ZSTD_DCtx for each decom-
press(). This was measured to slow down decompression by 40-200MB/s. The API guarantees say ZstdDe-
compressor is not thread safe. So we reuse the ZSTD_DCtx across operations and make things faster in the
process.

• ZstdCompressor.write_to()’s compress() and flush() methods now return number of bytes written.

• ZstdDecompressor.write_to()’s write() method now returns the number of bytes written to the underlying output
object.

• CompressionParameters instances now expose their values as attributes.

• CompressionParameters instances no longer are subscriptable nor behave as tuples (backwards incompatible).
Use attributes to obtain values.

• DictParameters instances now expose their values as attributes.

76 Chapter 13. Version History



python-zstandard, Release 0.20.0

13.23 0.6.0 (released 2017-01-14)

• Support for legacy zstd protocols (build time opt in feature).

• Automation improvements to test against Python 3.6, latest versions of Tox, more deterministic AppVeyor
behavior.

• CFFI “parser” improved to use a compiler preprocessor instead of rewriting source code manually.

• Vendored version of zstd updated to 1.1.2.

• Documentation improvements.

• Introduce a bench.py script for performing (crude) benchmarks.

• ZSTD_CCtx instances are now reused across multiple compress() operations.

• ZstdCompressor.write_to() now has a flush() method.

• ZstdCompressor.compressobj()’s flush() method now accepts an argument to flush a block (as opposed to ending
the stream).

• Disallow compress(b”) when writing content sizes by default (issue #11).

13.24 0.5.2 (released 2016-11-12)

• more packaging fixes for source distribution

13.25 0.5.1 (released 2016-11-12)

• setup_zstd.py is included in the source distribution

13.26 0.5.0 (released 2016-11-10)

• Vendored version of zstd updated to 1.1.1.

• Continuous integration for Python 3.6 and 3.7

• Continuous integration for Conda

• Added compression and decompression APIs providing similar interfaces to the standard library zlib and bz2
modules. This allows coding to a common interface.

• zstd.__version__ is now defined.

• read_from() on various APIs now accepts objects implementing the buffer protocol.

• read_from() has gained a skip_bytes argument. This allows callers to pass in an existing buffer with a
header without having to create a slice or a new object.

• Implemented ZstdCompressionDict.as_bytes().

• Python’s memory allocator is now used instead of malloc().

• Low-level zstd data structures are reused in more instances, cutting down on overhead for certain operations.

13.23. 0.6.0 (released 2017-01-14) 77



python-zstandard, Release 0.20.0

• distutils boilerplate for obtaining an Extension instance has now been refactored into a standalone
setup_zstd.py file. This allows other projects with setup.py files to reuse the distutils code for
this project without copying code.

• The monolithic zstd.c file has been split into a header file defining types and separate .c source files for the
implementation.

13.27 Older History

2016-08-31 - Zstandard 1.0.0 is released and Gregory starts hacking on a Python extension for use by the Mercurial
project. A very hacky prototype is sent to the mercurial-devel list for RFC.

2016-09-03 - Most functionality from Zstandard C API implemented. Source code published on https://github.com/
indygreg/python-zstandard. Travis-CI automation configured. 0.0.1 release on PyPI.

2016-09-05 - After the API was rounded out a bit and support for Python 2.6 and 2.7 was added, version 0.1 was
released to PyPI.

2016-09-05 - After the compressor and decompressor APIs were changed, 0.2 was released to PyPI.

2016-09-10 - 0.3 is released with a bunch of new features. ZstdCompressor now accepts arguments controlling
frame parameters. The source size can now be declared when performing streaming compression. ZstdDecompres-
sor.decompress() is implemented. Compression dictionaries are now cached when using the simple compression and
decompression APIs. Memory size APIs added. ZstdCompressor.read_from() and ZstdDecompressor.read_from()
have been implemented. This rounds out the major compression/decompression APIs planned by the author.

2016-10-02 - 0.3.3 is released with a bug fix for read_from not fully decoding a zstd frame (issue #2).

2016-10-02 - 0.4.0 is released with zstd 1.1.0, support for custom read and write buffer sizes, and a few bug fixes
involving failure to read/write all data when buffer sizes were too small to hold remaining data.

2016-11-10 - 0.5.0 is released with zstd 1.1.1 and other enhancements.

78 Chapter 13. Version History

https://github.com/indygreg/python-zstandard
https://github.com/indygreg/python-zstandard


CHAPTER 14

Missing and Unimplemented Features

This document attempts to capture features of the zstd C API that are currently not exposed to Python.

If there is a feature on this page that would be beneficial to you, please open a GitHub issue requesting its implemen-
tation. If an existing GitHub issue exists, please leave a comment on the issue to amplify the importance of the request
(this project’s author doesn’t monitor the emoji counts).

14.1 Missing Constants

• ZSTD_CLEVEL_DEFAULT

• ZSTD_SRCSIZEHINT_MIN

• ZSTD_SRCSIZEHINT_MAX

• ZSTD_BLOCKSIZE_MAX_MIN

• ZSTD_DECOMPRESSION_MARGIN

14.2 Compression and Decompression Parameters

• ZSTD_p_forceAttachDict

• ZSTD_dictForceLoad

• ZSTD_c_targetCBlockSize

• ZSTD_c_literalCompressionMode

• ZSTD_c_srcSizeHint

• ZSTD_d_stableOutBuffer

• ZSTD_c_enableDedicatedDictSearch

• ZSTD_c_stableInBuffer

79



python-zstandard, Release 0.20.0

• ZSTD_c_stableOutBuffer

• ZSTD_c_blockDelimiters

• ZSTD_c_validateSequences

• ZSTD_c_useBlockSplitter

• ZSTD_c_useRowMatchFinder

• ZSTD_d_forceIgnoreChecksum

• ZSTD_d_refMultipleDDicts

• ZSTD_refMultipleDDicts_e

• ZSTD_c_prefetchCDictTables

• ZSTD_c_enableSeqProducerFallback

• ZSTD_c_maxBlockSize

• ZSTD_c_searchForExternalRepcodes

• ZSTD_d_disableHuffmanAssembly

• ZSTD_d_stableOutBuffer

14.3 Missing Functions

• ZSTDMT_toFlushNow()

• ZSTD_minCLevel()

• ZSTD_cParam_getBounds()

• ZSTD_dParam_getBounds()

• ZSTD_generateSequences()

• ZSTD_mergeBlockDelimiters()

• ZSTD_compressSequences()

• ZSTD_writeSkippableFrame()

• ZSTD_decompressionMargin()

• ZSTD_sequenceBound()

14.4 Missing Features

• ZSTD_getFrameProgression() isn’t exposed everywhere it could be.

• Compression parameters cannot be modified mid operation.

• ZSTD_Sequence and related ZSTD_getSequences() not exposed.

• ZSTD_threadPool not exposed.

• ZSTD_sequenceProducer_F and ZSTD_registerSequenceProducer() not exposed.

• ZSTD_CCtx_getParameter(), ZSTD_CCtxParam_getParameter(), and
ZSTD_DCtx_getParameter() could be leveraged for parameter retrieval.

80 Chapter 14. Missing and Unimplemented Features



python-zstandard, Release 0.20.0

• ZSTD_CCtx_setCParams() could potentially be utilized.

• ZSTD_error_* constants / error codes not exposed.

14.4. Missing Features 81



python-zstandard, Release 0.20.0

82 Chapter 14. Missing and Unimplemented Features



Index

A
as_bytes() (zstandard.ZstdCompressionDict

method), 44

B
BufferSegment (class in zstandard), 55
BufferSegments (class in zstandard), 55
BufferWithSegments (class in zstandard), 56
BufferWithSegmentsCollection (class in zstan-

dard), 56

C
chain_log (zstandard.ZstdCompressionParameters at-

tribute), 48
chunker() (zstandard.ZstdCompressor method), 18
close() (zstandard.ZstdCompressionReader method),

25
close() (zstandard.ZstdCompressionWriter method),

23
close() (zstandard.ZstdDecompressionReader

method), 37
close() (zstandard.ZstdDecompressionWriter

method), 36
closed (zstandard.ZstdCompressionReader attribute),

25
closed (zstandard.ZstdCompressionWriter attribute),

23
closed (zstandard.ZstdDecompressionReader at-

tribute), 37
closed (zstandard.ZstdDecompressionWriter at-

tribute), 36
compress() (in module zstandard), 52
compress() (zstandard.ZstdCompressionChunker

method), 28
compress() (zstandard.ZstdCompressionObj method),

26
compress() (zstandard.ZstdCompressor method), 18
compression_level (zstan-

dard.ZstdCompressionParameters attribute),

48
compressobj() (zstandard.ZstdCompressor method),

18
copy_stream() (zstandard.ZstdCompressor method),

18
copy_stream() (zstandard.ZstdDecompressor

method), 29

D
decompress() (in module zstandard), 53
decompress() (zstandard.ZstdDecompressionObj

method), 38
decompress() (zstandard.ZstdDecompressor

method), 30
decompress_content_dict_chain() (zstan-

dard.ZstdDecompressor method), 31
decompressobj() (zstandard.ZstdDecompressor

method), 32
dict_id() (zstandard.ZstdCompressionDict method),

44

E
enable_ldm (zstandard.ZstdCompressionParameters

attribute), 48
eof (zstandard.ZstdDecompressionObj attribute), 38
estimate_decompression_context_size()

(in module zstandard), 52
estimated_compression_context_size()

(zstandard.ZstdCompressionParameters
method), 48

F
fileno() (zstandard.ZstdCompressionWriter method),

23
fileno() (zstandard.ZstdDecompressionWriter

method), 36
finish() (zstandard.ZstdCompressionChunker

method), 28
flush() (zstandard.ZstdCompressionChunker

method), 28

83



python-zstandard, Release 0.20.0

flush() (zstandard.ZstdCompressionObj method), 27
flush() (zstandard.ZstdCompressionReader method),

25
flush() (zstandard.ZstdCompressionWriter method),

23
flush() (zstandard.ZstdDecompressionObj method),

38
flush() (zstandard.ZstdDecompressionReader

method), 37
flush() (zstandard.ZstdDecompressionWriter

method), 36
force_max_window (zstan-

dard.ZstdCompressionParameters attribute),
48

format (zstandard.ZstdCompressionParameters at-
tribute), 48

frame_content_size() (in module zstandard), 51
frame_header_size() (in module zstandard), 51
frame_progression() (zstandard.ZstdCompressor

method), 19
FrameParameters (class in zstandard), 51
from_level() (zstan-

dard.ZstdCompressionParameters static
method), 48

G
get_frame_parameters() (in module zstandard),

51

H
hash_log (zstandard.ZstdCompressionParameters at-

tribute), 48

I
isatty() (zstandard.ZstdCompressionReader

method), 25
isatty() (zstandard.ZstdCompressionWriter method),

23
isatty() (zstandard.ZstdDecompressionReader

method), 37
isatty() (zstandard.ZstdDecompressionWriter

method), 36

J
job_size (zstandard.ZstdCompressionParameters at-

tribute), 48

L
ldm_bucket_size_log (zstan-

dard.ZstdCompressionParameters attribute),
48

ldm_hash_log (zstan-
dard.ZstdCompressionParameters attribute),
48

ldm_hash_rate_log (zstan-
dard.ZstdCompressionParameters attribute),
48

ldm_min_match (zstan-
dard.ZstdCompressionParameters attribute),
48

M
memory_size() (zstandard.ZstdCompressionWriter

method), 23
memory_size() (zstandard.ZstdCompressor method),

19
memory_size() (zstan-

dard.ZstdDecompressionWriter method),
36

memory_size() (zstandard.ZstdDecompressor
method), 32

min_match (zstandard.ZstdCompressionParameters at-
tribute), 48

multi_compress_to_buffer() (zstan-
dard.ZstdCompressor method), 19

multi_decompress_to_buffer() (zstan-
dard.ZstdDecompressor method), 32

N
next() (zstandard.ZstdCompressionReader method),

25
next() (zstandard.ZstdDecompressionReader method),

37

O
offset (zstandard.BufferSegment attribute), 55
open() (in module zstandard), 52
overlap_log (zstandard.ZstdCompressionParameters

attribute), 48

P
precompute_compress() (zstan-

dard.ZstdCompressionDict method), 44

R
read() (zstandard.ZstdCompressionReader method),

25
read() (zstandard.ZstdCompressionWriter method), 23
read() (zstandard.ZstdDecompressionReader method),

37
read() (zstandard.ZstdDecompressionWriter method),

36
read1() (zstandard.ZstdCompressionReader method),

25
read1() (zstandard.ZstdDecompressionReader

method), 37
read_to_iter() (zstandard.ZstdCompressor

method), 20

84 Index



python-zstandard, Release 0.20.0

read_to_iter() (zstandard.ZstdDecompressor
method), 33

readable() (zstandard.ZstdCompressionReader
method), 25

readable() (zstandard.ZstdCompressionWriter
method), 24

readable() (zstandard.ZstdDecompressionReader
method), 37

readable() (zstandard.ZstdDecompressionWriter
method), 36

readall() (zstandard.ZstdCompressionReader
method), 25

readall() (zstandard.ZstdCompressionWriter
method), 24

readall() (zstandard.ZstdDecompressionReader
method), 37

readall() (zstandard.ZstdDecompressionWriter
method), 36

readinto() (zstandard.ZstdCompressionReader
method), 25

readinto() (zstandard.ZstdCompressionWriter
method), 24

readinto() (zstandard.ZstdDecompressionReader
method), 37

readinto() (zstandard.ZstdDecompressionWriter
method), 36

readinto1() (zstandard.ZstdCompressionReader
method), 25

readinto1() (zstandard.ZstdDecompressionReader
method), 37

readline() (zstandard.ZstdCompressionReader
method), 25

readline() (zstandard.ZstdCompressionWriter
method), 24

readline() (zstandard.ZstdDecompressionReader
method), 38

readline() (zstandard.ZstdDecompressionWriter
method), 36

readlines() (zstandard.ZstdCompressionReader
method), 25

readlines() (zstandard.ZstdCompressionWriter
method), 24

readlines() (zstandard.ZstdDecompressionReader
method), 38

readlines() (zstandard.ZstdDecompressionWriter
method), 36

S
search_log (zstandard.ZstdCompressionParameters

attribute), 48
seek() (zstandard.ZstdCompressionWriter method), 24
seek() (zstandard.ZstdDecompressionReader method),

38

seek() (zstandard.ZstdDecompressionWriter method),
36

seekable() (zstandard.ZstdCompressionReader
method), 25

seekable() (zstandard.ZstdCompressionWriter
method), 24

seekable() (zstandard.ZstdDecompressionReader
method), 38

seekable() (zstandard.ZstdDecompressionWriter
method), 36

segments() (zstandard.BufferWithSegments method),
56

size (zstandard.BufferWithSegments attribute), 56
strategy (zstandard.ZstdCompressionParameters at-

tribute), 48
stream_reader() (zstandard.ZstdCompressor

method), 21
stream_reader() (zstandard.ZstdDecompressor

method), 34
stream_writer() (zstandard.ZstdCompressor

method), 21
stream_writer() (zstandard.ZstdDecompressor

method), 35

T
target_length (zstan-

dard.ZstdCompressionParameters attribute),
48

tell() (zstandard.ZstdCompressionReader method),
25

tell() (zstandard.ZstdCompressionWriter method), 24
tell() (zstandard.ZstdDecompressionReader method),

38
tell() (zstandard.ZstdDecompressionWriter method),

36
threads (zstandard.ZstdCompressionParameters at-

tribute), 48
tobytes() (zstandard.BufferSegment method), 55
tobytes() (zstandard.BufferWithSegments method),

56
train_dictionary() (in module zstandard), 45
truncate() (zstandard.ZstdCompressionWriter

method), 24
truncate() (zstandard.ZstdDecompressionWriter

method), 36

U
unconsumed_tail (zstan-

dard.ZstdDecompressionObj attribute), 39
unused_data (zstandard.ZstdDecompressionObj at-

tribute), 39

W
window_log (zstandard.ZstdCompressionParameters

Index 85



python-zstandard, Release 0.20.0

attribute), 48
writable() (zstandard.ZstdCompressionReader

method), 25
writable() (zstandard.ZstdCompressionWriter

method), 24
writable() (zstandard.ZstdDecompressionReader

method), 38
writable() (zstandard.ZstdDecompressionWriter

method), 36
write() (zstandard.ZstdCompressionReader method),

25
write() (zstandard.ZstdCompressionWriter method),

24
write() (zstandard.ZstdDecompressionReader

method), 38
write() (zstandard.ZstdDecompressionWriter

method), 36
write_checksum (zstan-

dard.ZstdCompressionParameters attribute),
48

write_content_size (zstan-
dard.ZstdCompressionParameters attribute),
49

write_dict_id (zstan-
dard.ZstdCompressionParameters attribute),
49

writelines() (zstandard.ZstdCompressionReader
method), 25

writelines() (zstandard.ZstdCompressionWriter
method), 24

writelines() (zstandard.ZstdDecompressionReader
method), 38

writelines() (zstandard.ZstdDecompressionWriter
method), 36

Z
ZstdCompressionChunker (class in zstandard), 27
ZstdCompressionDict (class in zstandard), 43
ZstdCompressionObj (class in zstandard), 26
ZstdCompressionParameters (class in zstan-

dard), 47
ZstdCompressionReader (class in zstandard), 24
ZstdCompressionWriter (class in zstandard), 22
ZstdCompressor (class in zstandard), 17
ZstdDecompressionObj (class in zstandard), 38
ZstdDecompressionReader (class in zstandard),

36
ZstdDecompressionWriter (class in zstandard),

35
ZstdDecompressor (class in zstandard), 29

86 Index


	Project Information
	State of Project
	Comparison to Other Python Bindings
	Performance
	Bundling of Zstandard Source Code
	Note on Zstandard’s Experimental API
	Donate

	Installing
	Requirements
	CFFI Backend
	Legacy Format Support
	All Install Arguments
	Building Against External libzstd

	Concepts
	Zstandard Frames and Compression Format
	Compression and Decompression Contexts
	One-shot And Streaming Operations
	Dictionaries
	Python Buffer Protocol
	Requiring Output Sizes for Non-Streaming Decompression APIs

	API Usage
	Choosing an API
	Thread and Object Reuse Safety
	Performance Considerations

	Compression APIs
	ZstdCompressor
	ZstdCompressionWriter
	ZstdCompressionReader
	ZstdCompressionObj
	ZstdCompressionChunker

	Decompression APIs
	ZstdDecompressor
	ZstdDecompressionWriter
	ZstdDecompressionReader
	ZstdDecompressionObj

	Multi-Threaded Compression
	Dictionaries
	ZstdCompressionDict
	Training Dictionaries

	ZstdCompressionParameters
	Miscellaneous APIs
	Frame Inspection
	estimate_decompression_context_size()
	open()
	compress()
	decompress()
	Constants

	Buffer Types
	BufferSegment
	BufferSegments
	BufferWithSegments
	BufferWithSegmentsCollection

	Contributing
	Version History
	1.0.0 (not yet released)
	0.20.0 (released 2023-02-20)
	0.19.0 (released 2022-10-29)
	0.18.0 (released 2022-06-20)
	0.17.0 (released 2021-01-18)
	0.16.0 (released 2021-10-16)
	0.15.2 (released 2021-02-27)
	0.15.1 (released 2020-12-31)
	0.15.0 (released 2020-12-29)
	0.14.1 (released 2020-12-05)
	0.14.0 (released 2020-06-13)
	0.13.0 (released 2019-12-28)
	0.12.0 (released 2019-09-15)
	0.11.1 (released 2019-05-14)
	0.11.0 (released 2019-02-24)
	0.10.2 (released 2018-11-03)
	0.10.1 (released 2018-10-08)
	0.10.0 (released 2018-10-08)
	0.9.1 (released 2018-06-04)
	0.9.0 (released 2018-04-08)
	0.8.0 (released 2017-03-08)
	0.7.0 (released 2017-02-07)
	0.6.0 (released 2017-01-14)
	0.5.2 (released 2016-11-12)
	0.5.1 (released 2016-11-12)
	0.5.0 (released 2016-11-10)
	Older History

	Missing and Unimplemented Features
	Missing Constants
	Compression and Decompression Parameters
	Missing Functions
	Missing Features

	Index

